前言
我学习 Slam 14讲 的时候感觉图优化那一段好难懂!经过我的查询,终于有了大致的了解,记录并分享。终于明白slam的图优化了!(图优化就是空壳子)。一开始 g20, 边,节点什么的晕死了!我看了一下代码 link link 的解说:好像就是一套固定的解法!(好像无论什么图几乎都是固定的套路,感觉就是和神经网络的优化器差不多,神经网络可以多变,但是优化器都是通用的。这样看来,我们这里的图优化应该有成熟的理论了)。
但是我一直不明白几个问题:
- 图如何建立?(感觉书里面很轻松就建立了,但是不知道我们实际用的时候是需要自己diy吗?还是不用?)
- 这个固定的解法是什么?(或者如何数学建模的?总要转化为数学问题吧!)
1 我觉得首先你要清楚求解的是什么? - 位姿
这个不用说了
2 如何求解? - 反投影后的值和测量值接近就好
中间密密麻麻的线就是真实与反投影的误差,要使得他们的长度小,就得到了右图。这一段不是说解法,而是如何建模解决问题的。一开始以为要把实际问题转化为图论、图优化,结果后来才发现,完全用不着介绍这么复杂的,就是误差最小 + 最小二乘法!我也是看了这个才link 知道的。
3 具体如何求解? - LM方法
这个用大家熟悉的数值分析的内容就好。依据上面,我们有了目标函数(误差的最小二乘法),求解就不难了,也不需要知道如何求的。