AI预测相关目录
AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验
- EEMD策略及踩坑
- VMD-CNN-LSTM时序预测
- 对双向LSTM等模型添加自注意力机制
- K折叠交叉验证
- optuna超参数优化框架
- 多任务学习-模型融合测略
一、模型融合
模型融合是自创概念,实际上是对多任务学习一直情况的描述性称呼。
多任务学习的核心思想是通过共享模型参数来学习多个相关任务。 传统的单任务学习方法通常是为每个任务训练一个独立的模型,而多任务学习则将多个任务的数据合并到一个模型中,共享一部分或全部的模型参数。 这样一来,不同任务之间可以通过共享的参数相互影响,从而提高整体性能。 在多任务学习中,模型的架构通常分为两个部分:共享层和任务特定层。 共享层是多个任务共享的部分,用于学习共同的特征表示。 而任务特定层则是每个任务独自的部分,用于学习任务特定的特征和输出。 通过共享层和任务特定层的结合,模型可以同时学习多个任务,并在任务之间共享和传递知识。
二、模型介绍
本次分享模型结构大体如下:
该模型对一个预测任务进行设计,该任务有taska taskb两类子任务,其任务之间存在互相影响的同时又具有一定的区分度。
三、代码示例
# (输入1) CNN部分 输入time数据
n_timesteps, n_features = trainX1.shape[1],trainX1.shape[2]
inputs1 = Input(shape=(n_timesteps,n_features))
lstm = LSTM(128, input_shape=(trainX1.shape[1], trainX1.shape[2]), return_sequences=True)(inputs1)
conv1 = Conv1D(filters=512