【量化策略系列基本篇之一】股票动量策略(汇总篇)

本文介绍了股票动量策略的基本概念,包括价格动量和移动平均线动量策略。详细阐述了不同动量指标的计算方法,如累计收益率、平均收益率、风险调整后收益率和指数加权平均收益率,并提供了Python3代码示例。文章探讨了不同平均线在策略中的应用,并展示了基于移动平均线的交易信号构建。此外,还强调了策略的适用性和局限性,以及未来可能的策略比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文持续更新中。最后更新时间:11/3/2019
更新日志(11/3/2019):
(1)优化部分表述和排版,修改错误
(2)添加移动平均动量部分内容
(3)修改部分2.1中部分代码错误
(4)增加免责声明

1. 前言

1.1 相关回顾

现在也没啥相关回顾,现在只有一篇作者简介绍(笑哭)OvO
[1] 作者简介

1.2 策略简介

动量策略中所谓的动量(Momentum),是指某一对象所具有的一种倾向于保持其原有属性或特征的性质,也可以简单理解成一种惰性(Inertia)。股票的动量,简单地说就是涨的还会接着涨,跌的还会接着跌;过去涨得越猛,未来涨的也就越猛;过去跌得越狠,未来也会跌的越狠

动量策略(Momentum Strategy),则是指通过某些技术方法或量化指标,挖掘股票的动量特性,从而制定风险可控并且可以大概率盈利的择时策略。

在中国的A股市场中,“追涨杀跌”其实就是一种利用股票的动量特性进行投资的行为:当股票价格迅速上涨的时候,可以认为股票价格有较高的增长动力,或者说在未来一段时间内股票可能具有持续增长的趋势。这种策略虽然听起来简单粗暴,但是诸多技术指标都是建立在这一投资逻辑的基础之上的;通过对大量K线图的分析,我们甚至可以发现股票价格的动量特征在A股市场中是普遍存在的。我们将在第2部分的实证中进一步验证这一说法。实际上,股票价格的动量特征背后是具有经济学逻辑和行为学逻辑支撑的(例如马太效应、羊群效应、锚定效应等),我也将在后面的文章中对这些现象进行进一步阐述。(暗示关注)

在本章描述的动量策略中,我们将分别使用收益率(Rate of Return)、移动平均线(Moving Average)等指标对动量进行量化,实现不同的动量策略。

1.3 术语介绍

  • 简单移动平均线(MA)
  • 指数加权移动平均线(EMA)
  • 调整后价格(P_adj)
  • 先复权价格
  • 后复权价格

1.4 其他说明

记每一单位时间内的股票收益率为:
R i ( t ) = P i ( t ) P i ( t − 1 ) − 1   R_i(t) = \frac {P_i(t)}{P_i(t-1)} -1\, Ri(t)=Pi(t1)Pi(t)1
这里的一个单位时间差可以是月频、周频等低频数据,也可以是日频、1小时、5分钟、1秒钟等高频数据,取决于你可获取的数据以及你的交易喜好(偏向于高频交易还是低频交易)。
由于股票存在分红与分股,而分红和分股在投资逻辑上既不会影响股票的内在价值,也不会破坏该股票的增长和下降的原有趋势。

注:实际上,这一条并不严格成立,我们暂时做出这一合理假设。对于分红和分股对股票趋势的影响我将择机在未来的文章中做出进一步说明。

在本文中,我们以更好收集的日频数据为例进行说明,并每日的 调整后收盘价格(Adjusted Closed Price) 作为股票的价格P。需要注意的是,这里的调整后价格P我们使用更加直观的先复权价格

注:容易证明:前复权价格和后复权价格在计算已实现的每日价格变化率时是等价的。

1.5 数据说明

本文的数据来源:tushare数据库


2. 动量策略及其代码实现

2.1 价格动量策略

价格动量是指以价格的收益率作为指标衡量动量的大小,这些指标可以是累计收益率(Cumulative Rate of Return),平均收益率(Average Rate of Return),风险调整后收益(Risk-Adjusted Rate of Return)等。

2.1.1 价格动量指标1:累计收益率(cumulative Rate of Return)

在t时刻,股票i的时间长度为T的累计收益率有:
R i c u m ( t , T ) = P i ( t ) P i ( t − T + 1 ) − 1 = ∏ j = t t − T + 1 ( R i ( j ) + 1 ) − 1 R_i^{cum}(t, T) = \frac {P_i(t)}{P_i(t-T+1)} -1 = \prod_{j = t}^{t-T+1}{(R_i(j)+1)} -1 Ricum(t,T)=Pi(tT+1)Pi(t)1=j=ttT+1(Ri(j)+1)1
从指标构造的角度来说,使用累计收益率的一个理由是:考虑一段时间内股票的价格变化率,而不是某一天的变化率,可以在一定程度上过滤掉一些极端的变化情况(例如今天涨停,明天跌停,实际上可能是由于一些噪音信号导致的)。

注:累计收益率其实是过去各时点几何平均收益率的N次方。因此,信号的构造理论上与几何平均收益率是等价的

2.1.2 价格动量指标2:算数平均收益率(Average Rate of Return)

在t时刻,股票i的时间长度为T的算数平均收益率有:
R m e a n ( t , T ) = 1 T ∑ j = 0 T − 1 R i ( t − j ) R_{mean} (t,T)= \frac{1}{T}\sum_{j=0}^{T-1}{R_i(t-j)} Rmean(t,T)=T1j=0T1Ri(tj)

从本质上讲,算术平均收益率暗含回溯周期内各时间点的收益率对当前时刻动量的造影响是相等的。

2.1.3 价格动量指标3:风险调整后收益率(Risk-adjusted Rate of Return)

在t时刻,股票i的时间长度为T的风险调整后收益率有:
R i a d j ( T ) = R i m e a n σ i R_i^{adj}(T) = \frac {R_i^{mean}}{\sigma_i} Riadj(T)=σiRimean
其中:
σ i 2 = 1 T − 1 ∑ j = 0 T − 1 [ R i ( t − j ) − R i m e a n ( T ) ] 2 \sigma_i^2 = \frac{1}{T-1}\sum_{j=0}^{T-1}{[R_i(t-j) -R_i^{mean}(T)]^2} σi2=T11j=0T1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值