摘 要: 雾或霾天气下,大气粒子对光的散射作用造成光学图像细节弱化,严重影响后续图像分析与处理任 务. 现有去雾算法存在去雾后丢失图像信息、产生模糊以及天空区域过增强等问题. 本文从偏振视角与暗通道先验理 论出发,提出了一种基于直接透射光梯度特征引导的目标偏振度估算算法,进行图像去雾. 通过偏振图像获取场景与 大气偏振信息;再以暗通道先验算法估计的直接透射光梯度特征为引导,提出目标偏振度估算算法;最终将估算的目 标偏振度转为大气光强,经过原理性约束与引导滤波,得到优化的大气光强,进一步求解去雾图像与优化的目标偏振 度. 定性实验表明:本文算法去雾图像具有良好的平滑度,且克服了现有去雾算法存在的可见度低、去雾残留以及天 空区域过增强问题;定量实验表明:本文算法既不会造成图像信息丢失,也不会产生过多噪声与模糊. 综合对比五种 代表性去雾算法,本文算法具有良好的细节恢复能力、图像熵提升能力以及色调还原能力.
关键词: 图像处理;图像去雾;偏振图像;暗通道先验;偏振度估算
1 引言
雾或霾天气下,大气中存在的高浓度微小粒子会 对光产生散射作用,粒子散射的光线与目标本身反射 的光线混合,造成民用监控和军事探测等专业成像设 备采集的图像清晰度与对比度严重下降,为后续的目 标检测、跟踪等任务