基于梯度引导偏振度估算的图像去雾【1】

本文提出了一种新的图像去雾算法,结合偏振视角和暗通道先验理论,通过目标偏振度估算来处理雾天图像。算法有效地解决了天空区域过增强和去雾后信息丢失的问题,且无需深度学习训练,具有通用性和高效性。
摘要由CSDN通过智能技术生成

摘 要: 雾或霾天气下,大气粒子对光的散射作用造成光学图像细节弱化,严重影响后续图像分析与处理任 务. 现有去雾算法存在去雾后丢失图像信息、产生模糊以及天空区域过增强等问题. 本文从偏振视角与暗通道先验理 论出发,提出了一种基于直接透射光梯度特征引导的目标偏振度估算算法,进行图像去雾. 通过偏振图像获取场景与 大气偏振信息;再以暗通道先验算法估计的直接透射光梯度特征为引导,提出目标偏振度估算算法;最终将估算的目 标偏振度转为大气光强,经过原理性约束与引导滤波,得到优化的大气光强,进一步求解去雾图像与优化的目标偏振 度. 定性实验表明:本文算法去雾图像具有良好的平滑度,且克服了现有去雾算法存在的可见度低、去雾残留以及天 空区域过增强问题;定量实验表明:本文算法既不会造成图像信息丢失,也不会产生过多噪声与模糊. 综合对比五种 代表性去雾算法,本文算法具有良好的细节恢复能力、图像熵提升能力以及色调还原能力.

关键词: 图像处理;图像去雾;偏振图像;暗通道先验;偏振度估算

1 引言

        雾或霾天气下,大气中存在的高浓度微小粒子会 对光产生散射作用,粒子散射的光线与目标本身反射 的光线混合,造成民用监控和军事探测等专业成像设 备采集的图像清晰度与对比度严重下降,为后续的目 标检测、跟踪等任务造成严重影响. 含雾图像的去雾处 理可以有效提升图像清晰度,进一步提升后续图像分 析处理任务的性能. 因此,图像去雾在民用与军事领域 具有重要的研究意义. 近年来,涌现了众多图像去雾算法. 从去雾算法的 原理出发,可以将图像去雾算法具体分为三类:基于非 物 理 模 型 、基 于 物 理 模 型 和 基 于 深 度 学 习 的 去 雾 算法。

1. 1 基于非物理模型的去雾算法

        基于非物理模型的去雾算法,主要利用图像本身 的数学特征或统计特性增强图像细节,本质是图像增 强技术 . 具体包括直方图均衡化[2] 、Retinex 算法[3] 、小 波变换[4] 等 . 直方图均衡化[2] 利用非线性变换拉伸灰 度直方图增加图像对比度,进而实现去雾. 该方法原理 简单,可以实现一定程度的去雾,但容易引入额外噪声 且鲁棒性差 . Retinex 算法认为物体的色彩不受光照非 均性的影响,具有一致性 . Retinex 算法发展较为完善, 从单尺度 Retinex 算法改进为多尺度 Retinex 算法[5] ,再 引入色彩恢复因子得到色彩恢复的多尺度 Retinex 算 法[6] . 小波变换[4] 具有多分辨率特点,由于雾霾主要影 响图像低频部分,算法通过抑制低频亮度,增强高频亮 度,实现去雾. 以上算法的本质都是经过一定的统计与 变换将细节特征进行放大,都属于图像增强手段[1] .

1. 2 基于物理模型的去雾算法

        基于物理模型的去雾算法,主要以大气物理退化 模型为基础,通过结合不同的先验信息估算模型参数, 进一步求解去雾图像 . Schechner 等[7] 最先提出较成熟 的偏振去雾算法,但对包含浓雾天气的图像处理效果 较差 . Fattal等[8] 利用阴影与透射率局部不相关假设求 解透射率,但由于该方法固有的统计特性弱点,对浓雾 图像的去雾效果不好[9] . Tan[10] 认为无雾图像对比度高 于含雾图像,通过最大化对比度实现去雾 . 2009年,He 等[11] 通过分析大量的户外无雾图像,提出暗通道先验, 进一步提出了暗通道先验去雾算法,是目前最稳定的 去雾算法[1] . 该算法去雾效果明显,但存在颜色失真, 常伴有一定的分块与纹理效应[12] . 后续基于物理模型 的去雾算法多以暗通道先验为基础,结合各种先验信 息构建约束函数进行求解,实现去雾. 暗通道先验去雾算法虽能取得较好的效果,但参数设置存在局限性,导 致去雾鲁棒性不强[9] . 此外,使用暗通道先验去雾时, 大多数散射模型的去雾方法在处理天空区域时都会产 生过增强现象[9] . 如,Tarel等[13] 使用暗通道局部均值与 标准差表示大气光强,通过中值滤波估计大气厚度,利 用大气物理退化模型实现去雾.                                                                                                 除暗通道先验算法外,还有颜色衰减先验去雾算 法、基于偏振的图像去雾算法等. 其中颜色衰减先验去 雾算法复原的清晰图像色彩自然,但在景深处容易出 现雾残留等问题[1] . 偏振去雾算法计算需要估计未知 大气条件标定信息,估计成本过大、过程繁琐导致实际 运用难度较大[1] . 如,Fang等[14] 基于直接透射光与透射 率局部不相关假设,估算目标偏振度,进一步求解去雾 图像,但该算法假设易受图像噪声影响,导致偏振度出 现较大偏差,去雾图像出现大面积失真. 孟宇飞等[15] 提 出四分暗通道均值比较法,用于估计模型参数,进而实 现双角度偏振图像去雾算法 . 此算法虽然可以减小场 景中白色高亮物体对实验结果估计的影响,确保最后 所选区域位置在天空区域[15] ,但易受过曝与图像噪声 影响,鲁棒性较差.

1. 3 基于深度学习的去雾算法

        基于深度学习的去雾算法,主要从去雾数据集中 学习如何从含雾图像恢复出清晰图像 . 常见的公开去 雾数据集有 I-HAZE[16]、O-HAZE[17]、RESIDE[18]、NHHAZE[19] 和 BeDDE[20] 等,但以上数据集均未含有偏振 数据.                                                                            早期两种较为经典的基于深度学习的去雾范式: 第一种是利用深度学习估计大气物理模型参数进而实 现去雾. Cai等[21] 基于先验,提出一种名为DehazeNet的 端对端模型,输入含雾图像,输出透射图,代入大气物 理退化模型实现图像去雾. 去雾后图像细节明显,但景 深变化处去雾效果不好,低亮度区域易丢失图像信息, 且算法参数较多,效率较低. 此后,以DehazeNet为代表 的基于物理模型参数估计的深度学习去雾算法迅速发 展,如:王高峰等[22] 在透射率估计部分引入深度可分离 卷积层,提出改进 DehazeNet 模型 . 麻文刚等[9] 提出一 种景深引导网络(Depth Guided Netword,DGN)与环境 光优化的图像去雾算法 . 第二种是在像素域直接建立 含雾图像和清晰图像的映射,实现去雾 . Qin等[23] 提出 一种端到端的特征融合注意网络(Feature Fusion Atten⁃ tion Network,FFA-Net). Chen等[24] 提出一种基于生成对 抗网络(Generative Adversarial Network,GAN)的端到端 模型(Gated Context Aggregation Network,GCANet),利用平滑卷积取代了扩展卷积. 该算法不依赖先验信息, 但对数据集要求高,且应用场景受限. 肖进胜等[25] 基于 GAN 设计了漏斗型的生成器,实现从含雾图像到无雾 图像的转换.                                                                                                                                             此外,近年也涌现了很多新的去雾范式. Li[26] 等提 出一种有效的半监督学习算法用于单幅图像去雾 . Shao[27] 等为解决在合成图像上训练的模型不能很好地 推广到真实图像去雾的问题,提出一种域适应范式 . Zhao[28] 等将去雾任务分为可见度恢复与真实度增强, 提出基于两阶段去雾策略的弱监督去雾模型(Refine⁃ ment Dehazing Network,RefineDNet). Wu[29] 等提出一种 新的真实图像去雾范式:一方面重新考虑真实雾天图 像退化过程,提出一种不同退化类型的现象学pipeline; 另一方面结合强大的高质量码本先验提出真实图像去 雾模型(Real Image Dehazing network via high-quality Co⁃ debook Priors,RIDCP). Li[30] 等为解决单幅图像去雾中难 以获取同场景无雾图像和采集数据成本高的问题,受层 解纠缠启发,提出第一个用于单幅图像去雾的无监督 的,未训练的神经网络(You Only Look Yourself,YOLY). 绝大部分深度学习去雾算法的训练需要大量低质 量-高质量图像样本对,实际中成对样本难以获得,低质 量图像常通过物理模型对高质量图像降质得到,这种 人为仿真难以很好地模拟图像降质,因此训练出的模 型泛化性能差,处理真实图像时,往往会失效[31] . 且由 于大部分深度学习算法要求固定的分辨率输入,导致 很难迅速地将算法用于不同分辨率的图像.

1. 4 本文去雾算法

        针对大多数暗通道先验去雾算法对天空区域的过增强现象,偏振去雾算法易受图像噪声影响,以及大多 数深度学习去雾算法泛化性差、难以快速用于不同分 辨率图像的问题,本文提出了一种基于梯度引导偏振 度估算的图像去雾算法. 首先,从采集的偏振图像提取 场景偏振信息与大气偏振信息. 然后,假设图像小区域 内场景光强、大气光强不变,以暗通道先验算法[11] 估 计的直接透射光梯度特征作为引导,估算目标偏振 度 . 最后,将估算的目标偏振度转为大气光强,通过 原理性约束与引导滤波,求解去雾图像与优化的目 标偏振度 . 较于现有的暗通道先验算法,本文算法有 效地解决了天空区域过增强问题 . 相较于深度学习 去雾算法,本文算法不需要训练,具有普遍适用性, 且不会造成图像信息丢失或产生模糊. 实验结果表明, 本文算法具有良好的去雾效果,同时去雾图像具有良 好的细节信息、信息熵、色调还原程度与无参考图像质 量评价.

2 算法原理及模型构建

2. 1 大气物理退化模型

        大气物理退化模型假设大气是均匀的,并将成像 设备接收到的总光强 I 分为直接透射光强 D 和大气光 强A,如图1所示,使用公式表示为 I = D + A (1) 其中,直接透射光强 D 是目标反射光强 J 经大气衰减, 被成像设备接收的部分,使用公式表示为 D = Jexp ( - βd ) = Jt (2) 其中,β是大气衰减系数;d是目标到成像设备的传输距 离;t是透射率.

大气光强 A 由大气自身辐射,大气粒子散射太阳 光、环境光构成,使用公式表示为:

其中,A¥是无穷远处大气光强,通常视作全局参量[7] .去雾算法的本质是去除大气光强A,并对目标反射 光强 J 的衰减进行补偿,即 J 是理想情况下的去雾图 像. 结合式(1)~(3),可得去雾图像:

        由式(4)可知,实现去雾需求解A与A¥. 相关理论与实验结果均表明大气光强 A与目标反 射光强 J 为偏振光[14] . 将场景、大气、目标偏振特征与 大气物理退化模型相结合,得到大气物理退化模型的 偏振表示:

ρI = ρA A + ρD D (5)

        其中,ρ、ρA与ρD依次是场景、大气与目标偏振度. 进一 步推导,得到直接透射光强 D 与大气光强 A 的偏振 表示:

其中,式(7)将大气光强A表示为ρ、ρA与ρD的函数. 要 去雾需求解A与A¥,那么需要求解的参量分别是ρ、ρA、ρD与A¥.

2. 2 基于目标偏振度估算的去雾算法

        基于第 2. 1 节的分析,本节具体阐述如何求解 ρ、 ρA、ρD与A¥,并实现图像去雾. 基本思想是利用偏振图 像求解场景光强 I、场景偏振度 ρ与场景偏振角 α,在天 空区域估计大气偏振度 ρA,利用暗通道先验算法[11] 估 计无穷远处大气光强 A¥ 与直接透射光强 Ddark. 由于 目标区域场景光强同时包含直接透射光强与大气光 强,直接估算目标偏振度 ρD 是十分困难的,因此考虑 反应目标偏振特性的直接透射光,将式(6)看作目标 偏振度的函数 D ( ρD ),以直接透射光 Ddark 的梯度特征 作为引导,估算目标偏振度 . 再通过一系列转换、约束 和滤波优化,最终求得去雾图像与优化的目标偏振 度 . 图 2 为所提算法流程图,图中序号为具体的实现 步骤.

        第(1)步、第(2)步:采集偏振图像并提取场景光强 I、场景偏振度 ρ 和场景偏振角 α. 采集起偏方向为 0°、 45°、90°、135°的图像,分别记作I0°、I45°、I90°和I135°,可求 得斯托克斯矢量:

        其中,S0是场景光强;S1是水平方向和垂直方向的光强 差;S2 是 45° 和 135° 方向的光强差 . 由式(8),可以求 解I、ρ与α:

        第(3)步:基于场景光强I,利用暗通道先验算法[11] 估计无穷远处大气光强 A¥与直接透射光强 Ddark. 含雾 图像中天空区域光强非常接近 A¥,这使得暗通道中天 空区域的强度明显大于目标区域 . 由此选取暗通道中 强度最大的 0. 1% 像素,以其在 I 中的强度均值估计 A¥. 进一步估计直接透射光强 Ddark,详细推导见附 录A.

        第(4)步:基于场景光强 I,分割天空区域并估计大 气偏振度ρA与偏振角αA. 从大气物理退化模型大气均 匀的假设出发,理论上天空区域各像素偏振信息一致, 即 ρA 与 αA 是 全 局 参 量 . 基 于 天 空 区 域 像 素 估 计 ρA与αA:

        (1)由于分割天空区域是为了获取足够多的天空 像素,因此对分割边缘的准确性要求不高. 采用自动阈 值分割与手动分割结合的方式,在不含目标的前提下 获取足够多的天空像素;

         (2)采集偏振图像时,成像设备响应单元存在偏 差,这使得偏振图像含有一定的系统噪声 . 由于 S0 是 I0°与I90°之和,S1是I0°与I90°之差,S2是I45°与I135°之差, 可以认为S1与S2中的系统误差小于S0. 式(11)中,α的 求解只受 S1与 S2中的噪声影响,而式(10)中,ρ的求解 还会受到 S0中噪声的影响 . 为抑制系统噪声对估计的 影响:首先由式(11)求解各天空像素的偏振角,以出现 频次最高的偏振角为 αA;其次,选取偏振角为 αA 的天 空像素,以其最大偏振度为ρA.

        第(5)步:基于上述步骤得到的I、ρ、ρA与Ddark估算 目标偏振度. 基于场景光强I与大气光强A在均匀区域 内缓慢变化的性质,假设小区域内场景光强与大气光 强不变,该假设仅在少数边缘变化剧烈情况下有效性 较弱. 综合考虑I与A不变的假设和估算精度,选择5 ´ 5像素的小区域用于目标偏振度估算 . 由式(6)可以发 现,直接透射光强D在已知场景光强I、场景偏振度ρ与 大气偏振度 ρA的条件下,是以目标偏振度 ρD为自变量 的函数 D ( ρD ). 以 D ( ρD ) 梯度特征与 Ddark 梯度特征的 差异构造代价函数,通过优化代价函数估算ρD,求解过 程参照文献[32],详细推导见附录B.

        第(6)步:将场景光强I、场景偏振度ρ、大气偏振度 ρA与目标偏振度ρD代入式(7),求解大气光强A. 第(7)步:由于 A 是 I的组成部分,对 A 进行 0 < A £ I约束,再以 I为引导图像,对 A 进行引导滤波[33] ,得到 优化的大气光强Â . 第(8)步:将A¥与Â代入式(4),求解目标反射光强 J. 也可将式(7)变形,并将 Â代入,得到优化的目标偏 振度ρ̂ D = ρI - ρA Â I - Â . 由大气物理退化模型可知,求解目标反射光强J意 味着实现图像去雾处理.

  • 26
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BinaryStarXin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值