基于梯度引导偏振度估算的图像去雾【1】

本文提出了一种新的图像去雾算法,结合偏振视角和暗通道先验理论,通过目标偏振度估算来处理雾天图像。算法有效地解决了天空区域过增强和去雾后信息丢失的问题,且无需深度学习训练,具有通用性和高效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘 要: 雾或霾天气下,大气粒子对光的散射作用造成光学图像细节弱化,严重影响后续图像分析与处理任 务. 现有去雾算法存在去雾后丢失图像信息、产生模糊以及天空区域过增强等问题. 本文从偏振视角与暗通道先验理 论出发,提出了一种基于直接透射光梯度特征引导的目标偏振度估算算法,进行图像去雾. 通过偏振图像获取场景与 大气偏振信息;再以暗通道先验算法估计的直接透射光梯度特征为引导,提出目标偏振度估算算法;最终将估算的目 标偏振度转为大气光强,经过原理性约束与引导滤波,得到优化的大气光强,进一步求解去雾图像与优化的目标偏振 度. 定性实验表明:本文算法去雾图像具有良好的平滑度,且克服了现有去雾算法存在的可见度低、去雾残留以及天 空区域过增强问题;定量实验表明:本文算法既不会造成图像信息丢失,也不会产生过多噪声与模糊. 综合对比五种 代表性去雾算法,本文算法具有良好的细节恢复能力、图像熵提升能力以及色调还原能力.

关键词: 图像处理;图像去雾;偏振图像;暗通道先验;偏振度估算

1 引言

        雾或霾天气下,大气中存在的高浓度微小粒子会 对光产生散射作用,粒子散射的光线与目标本身反射 的光线混合,造成民用监控和军事探测等专业成像设 备采集的图像清晰度与对比度严重下降,为后续的目 标检测、跟踪等任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BinaryStarXin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值