模型介绍
定义
- 感知机(perceptron)是线性二分类模型,输入是实例的特征向量,输出是用“+1”和“-1”表示的实例类别。作为判别模型,感知机将实例用一个超平面划分为正负两类,是神经网络和支持向量机的基础。
表达式
- 函数定义:
2. 感知机的一个线性方程
3. 图例
学习策略
- 线性可分与线性不可分
- 让模型能够将数据集用一个超平面S完全的划分为正负两类,如果存在这样的超平面,那么数据集就是线性可分的,否则就是线性不可分。
- 损失函数定义
- 采用误分类点到超平面S的总距离定义
- 任一点x0到超平面S的距离:
- 总距离
学习算法
- 损失函数梯度表示
- 更新参数
算法具体过程
- 存在误分类点的条件,即式(3)异号