机器学习感知机模型

本文介绍了感知机的基本概念,包括其作为线性二分类模型的定义,通过线性方程和图例展示工作原理。讨论了线性可分与不可分的概念,并重点讲解了采用误分类点距离定义的学习策略和损失函数。此外,详细阐述了学习算法的过程,包括梯度更新步骤。
摘要由CSDN通过智能技术生成

模型介绍

定义

  1. 感知机(perceptron)是线性二分类模型,输入是实例的特征向量输出是用“+1”和“-1”表示的实例类别。作为判别模型,感知机将实例用一个超平面划分为正负两类,是神经网络和支持向量机的基础。

表达式

  1. 函数定义:
    在这里插入图片描述2. 感知机的一个线性方程
    在这里插入图片描述3. 图例
    在这里插入图片描述

学习策略

  1. 线性可分与线性不可分
  • 让模型能够将数据集用一个超平面S完全的划分为正负两类,如果存在这样的超平面,那么数据集就是线性可分的,否则就是线性不可分
  1. 损失函数定义
  • 采用误分类点到超平面S的总距离定义
  • 任一点x0到超平面S的距离:
    在这里插入图片描述- 总距离
    在这里插入图片描述

学习算法

  • 损失函数梯度表示
    在这里插入图片描述- 更新参数
    在这里插入图片描述

算法具体过程

在这里插入图片描述- 存在误分类点的条件,即式(3)异号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值