《实变函数简明教程》,第四章:Lebesgue积分,第4.1节-第4.3节,P82-P100,定理整理

本文详细探讨了实变函数中的Lebesgue积分,涵盖了非负简单和可测函数的积分性质,包括积分的线性性、可加性、Chebyshev不等式、积分与极限的关系等,提供了丰富的定理与推论,揭示了Lebesgue积分的深层理论。
摘要由CSDN通过智能技术生成

《实变函数简明教程》,第四章:Lebesgue积分,第4.1节-第4.3节,P82-P100,定理整理

P84,定理4.1(非负简单函数积分的性质)

提供对象: φ \varphi φ ψ \psi ψ都是可测集 E E E上的非负简单函数。

定理内容:

  1. 0 ≤ ∫ E φ ( x ) d x ≤ ∞ 0\le \int_{E}{\varphi \left( x \right)dx}\le \infty 0Eφ(x)dx
  2. ∫ E c φ ( x ) d x = c ∫ E φ ( x ) d x \int_{E}{c\varphi \left( x \right)dx}=c\int_{E}{\varphi \left( x \right)dx} Ecφ(x)dx=cEφ(x)dx,其中 c c c为非负实数。
  3. ∫ E ( φ ( x ) + ψ ( x ) ) d x = ∫ E φ ( x ) d x + ∫ E ψ ( x ) d x \int_{E}{\left( \varphi \left( x \right)+\psi \left( x \right) \right)dx}=\int_{E}{\varphi \left( x \right)dx}+\int_{E}{\psi \left( x \right)dx} E(φ(x)+ψ(x))dx=Eφ(x)dx+Eψ(x)dx
  4. 又若 E = A ∪ B E=A\cup B E=AB A ∩ B = ∅ A\cap B=\varnothing AB= A , B ∈ M A,B\in \mathscr{M} A,BM,则
    ∫ E φ ( x ) d x = ∫ A φ ( x ) d x + ∫ B φ ( x ) d x . \int_{E}{\varphi \left( x \right)dx}=\int_{A}{\varphi \left( x \right)dx}+\int_{B}{\varphi \left( x \right)dx}. Eφ(x)dx=Aφ(x)dx+Bφ(x)dx.
  5. 又若 φ ( x ) ≤ ψ ( x ) ( x ∈ E ) \varphi \left( x \right)\le \psi \left( x \right)\left( x\in E \right) φ(x)ψ(x)(xE),则
    ∫ E φ ( x ) d x ≤ ∫ E ψ ( x ) d x . \int_{E}{\varphi \left( x \right)dx}\le \int_{E}{\psi \left( x \right)dx}. Eφ(x)dxEψ(x)dx.

P87,定理4.2(非负可测函数积分的性质)

提供对象: f f f g g g都是可测集 E E E上的非负可测函数。

定理内容:

  1. 0 ≤ ∫ E f ( x ) d x ≤ ∞ 0\le \int_{E}{f \left( x \right)dx}\le \infty 0Ef(x)dx
  2. ∫ E c f ( x ) d x = c ∫ E f ( x ) d x \int_{E}{cf \left( x \right)dx}=c\int_{E}{f \left( x \right)dx} Ecf(x)dx=cEf(x)dx,其中 c c c为非负实数。
  3. ∫ E ( f ( x ) + g ( x ) ) d x = ∫ E f ( x ) d x + ∫ E g ( x ) d x \int_{E}{\left( f \left( x \right)+g \left( x \right) \right)dx}=\int_{E}{f \left( x \right)dx}+\int_{E}{g \left( x \right)dx} E(f(x)+g(x))dx=Ef(x)dx+Eg(x)dx
  4. 又若 E = E 1 ∪ E 2 E=E_1\cup E_2 E=E1E2 E 1 ∩ E 2 = ∅ E_1\cap E_2=\varnothing E1E2= E 1 , E 2 ∈ M E_1, E_2\in \mathscr{M} E1,E2M,则
    ∫ E φ ( x ) d x = ∫ E 1 φ ( x ) d x + ∫ E 2 φ ( x ) d x . \int_{E}{\varphi \left( x \right)dx}=\int_{E_1}{\varphi \left( x \right)dx}+\int_{E_2}{\varphi \left( x \right)dx}. Eφ(x)dx=E1φ(x)dx+E2φ(x)dx.
  5. 又若 f ( x ) ≤ g ( x ) ( x ∈ E ) f \left( x \right)\le g \left( x \right)\left( x\in E \right) f(x)g
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值