基于可视图法(VG)的路径规划算法简述

   可视图法路径规划(VG)

   可视图法由Lozano-Perez和Wesley于1979年在论文:《An Algorithm for Planning Collision-Free Paths among Polyhedral Obstacles.》中提出。

   基于可视图法路径规划算法主要包括以下两个步骤:①可视图的构建、②采用某种优化方法在构建的可视图上搜索最优路径

   在可视图算法中,障碍物用多边形描述,并将起始点S 、目标点G 和多边形障碍物的各顶点Vo,作为可视图的顶点V,将这些顶点之间相互连接,并保留不穿越障碍物的连线,作为可视图的边E,然后按照某种准则给这些边赋权值,比如以这些边的长度来作为其权值 。然后采用某种优化方法在构建的可视图上搜索所需的最优路径 ,根据以上过程易知,最终得到是包括S和G的一些顶点的集合,这些顶点按顺序相连接即为所得路径。


   由上述过程可知,构建可视图的关键在于确定任意两个顶点间的连线是否穿过障碍物障碍物。可以简单粗暴的直接检测任意两个顶点之间连线是否穿越了障碍物,也可采用以下方法简化判断:

   ① 同一障碍物的相邻顶点间的连线肯定不穿过障碍物(即该障碍物的某条边界),同一障碍物的的不相邻顶点间一般认为是穿越障碍物的(但是对于凹多边形障碍物而言,这样做有时会产生误判,因为凹多边形的某些不相邻节点之间连线也是不穿越障碍物的)

   ② 不同障碍物之间顶点是否穿过的障碍物的判断可以转化为判断其顶点连线是否会与构成障碍物的边的两个顶点之间连线相交,如下图中V1和V7之间的连线穿过了V3和V4的连线,因此V1和V7之间连线是穿越障碍物的。


   可视图法找到的路径是贴着障碍物边缘的,对此作者在论文中提到可以采用将障碍物的顶点按照设定的半径往外扩展一段距离的方法,效果如下所示:


   拓展障碍物半径可能丢失最短路径,如下图所示:


   如果拓展半径取较大值,我们设定扩展后的障碍物边缘与另一个扩展后的障碍物边缘的相交区域是可行的,则在相交区域的内部可以找到可行的代替路径,如下图蓝色路线所示:


   此外,也可以通过寻找障碍物的重心绘制圆形拓展区域或者采用障碍物的外接圆等方法进行拓展,不同的场景下,不同的拓展障碍物的方式往往能收获不同的效果。对于弧形的障碍物,难以寻找顶点,可已将圆弧边界用切线包围,转化为多边形障碍物,或者将弧形障碍物外拓为多边形障碍物,可视图法的灵活度较差,一旦环境发生改变,新增了障碍物,就要重新进行可视图的构建,不适合于实时性较高的动态场景。 切线图法和Voronoi图法对可视图法进行了改进。切线图法用障碍物的切线表示弧,Voronoi图法可以确保找到的路径尽最大可能的远离障碍物。


<think>好的,我现在需要帮助用户了解可视图法路径规划中的应用和实现方法。首先,我需要回顾一下之前提供的引用内容,尤其是引用3提到的可视图法的基本概念。用户可能已经知道可视图法将机器人视为点,障碍物作为多边形,然后连接起点、终点和多边形顶点,形成可视图,再通过优化算法求解最优路径。不过,用户现在想更深入地了解具体的应用或实现方法。 首先,我应该详细解释可视图法的实现步骤。根据引用3,步骤可能包括环境建模、构建可视图、路径搜索和路径优化。环境建模需要将障碍物表示为多边形,并确定起点和终点。构建可视图时,需要连接所有可见的点,确保连线不穿过障碍物。这里可能需要用几何算法来判断线段是否与多边形相交,例如使用射线法或者向量叉乘的方法。 接下来是路径搜索部分,用户可能想知道使用哪种算法。引用1提到了Dijkstra算法和A*算法,而引用2指出A*结合了启发式方法和Dijkstra的优点,能够找到最短路径。因此,在可视图中应用Dijkstra或A*算法是比较常见的做法。需要比较两者的优缺点,比如Dijkstra保证最短路径但效率可能较低,而A*在启发函数合适的情况下更快。 然后,路径优化部分可能需要考虑路径的平滑处理,比如使用贝塞尔曲线或样条插值,让路径更符合机器人的运动特性。这部分需要简要说明,但用户可能更关注前面的步骤。 在应用场景方面,引用3提到机器人被描述为点,所以可视图法适用于二维环境下的静态路径规划,比如仓库AGV、无人机航迹规划等。同时要指出其局限性,比如动态障碍物或高维空间的扩展问题。 最后,生成相关问题需要考虑用户可能的后续疑问,比如与其他算法的比较、动态障碍物的处理、三维扩展、实现时的几何算法细节,以及如何验证路径的最优性。这些问题可以帮助用户进一步深入学习。 需要确保回答中使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并且引用标识正确。同时,保持回答结构清晰,分步骤说明,并参考之前的引用内容,比如提到Dijkstra和A*的应用,以及可视化的方法。</think>### 可视图法路径规划中的实现方法 #### 一、算法原理 可视图法(Visibility Graph)通过构建环境中的可见连接关系,将路径规划问题转化为图论中的最短路径搜索问题。其核心思想是:**当且仅当两点之间连线不穿透任何障碍物时,该连线才被视为有效边**[^3]。 数学描述如下: - 设起点为$S$,终点为$G$,障碍物顶点集合为$V = \{v_1, v_2, ..., v_n\}$ - 构建图$G=(V', E)$,其中$V' = \{S, G\} \cup V$ - 边集$E$满足:$\forall u, v \in V'$,若线段$uv$不穿透障碍物,则$uv \in E$,权重为欧氏距离$\|uv\|$ #### 二、实现步骤 1. **环境建模** - 将障碍物表示为多边形(凸或凹多边形) - 确定起点$S$和终点$G$的坐标 2. **构建可视图** ```python def build_visibility_graph(obstacles, S, G): vertices = [S, G] for obs in obstacles: vertices.extend(obs.vertices) edges = [] for i in range(len(vertices)): for j in range(i+1, len(vertices)): if is_visible(vertices[i], vertices[j], obstacles): distance = euclidean_distance(vertices[i], vertices[j]) edges.append((vertices[i], vertices[j], distance)) return Graph(edges) ``` *注:`is_visible()`函数需实现几何可见性检测(如射线法)* 3. **路径搜索** - 使用Dijkstra算法或A*算法寻找最短路径[^1][^2] - 以A*算法为例,启发函数$h(v)$可设为到终点的欧氏距离: $$h(v) = \|v - G\|$$ 4. **路径优化** - 通过删除冗余顶点简化路径: $$SP = \{S, v_{k1}, v_{k2}, ..., G\}$$ - 使用贝塞尔曲线进行平滑处理 #### 三、应用特点 | 特性 | 说明 | |---------------------|----------------------------------------------------------------------| | **适用场景** | 二维静态环境、已知障碍物坐标、机器人可简化为点模型 | | **优点** | 保证找到最短路径、理论完备 | | **局限性** | 计算复杂度高($O(n^3)$)、难以处理动态障碍物、三维扩展困难 | #### 四、可视化实现建议 1. 使用Matplotlib绘制多边形障碍物 2. 用不同颜色区分已探索/未探索边 3. 动态展示路径搜索过程: ```python import matplotlib.pyplot as plt def visualize_graph(graph, path=None): plt.figure() # 绘制障碍物 for obs in obstacles: plt.fill(*zip(*obs.vertices), alpha=0.5) # 绘制可见边 for edge in graph.edges: plt.plot([edge[0].x, edge[1].x], [edge[0].y, edge[1].y], 'gray', linestyle='--') # 高亮显示最短路径 if path: x_coords = [p.x for p in path] y_coords = [p.y for p in path] plt.plot(x_coords, y_coords, 'r-', linewidth=2) plt.show() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慕羽★

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值