离散数学笔记(六)

一、二元关系相关概念和性质:

  • 二元关系的定义:
    ·有序对集合 R R R是笛卡尔积 A × B A\times B A×B上的关系,当且仅当 ∀ r ∈ R , ∃ x ∈ A , y ∈ B , 使 得 r = ( x , y ) \forall r\in R, \exist x\in A,y \in B, 使得r = (x,y) rR,xA,yB,使r=(x,y),并记 ( x , y ) ∈ R (x,y)\in R (x,y)R x R y xRy xRy,特殊地,当 A = B A = B A=B时,称R是集合A上的关系

  • 特殊关系:
    关系定义
    空关系 ∅ \empty R = ∅ R = \empty R=
    全关系 E A E_A EA E A = { ( x , y ) ∥ ∀ x , y ∈ A } E_A = \{(x,y)\|\forall x,y \in A \} EA={(x,y)x,yA}
    恒同关系 I A I_A IA I A = { ( x , x ) ∥ ∀ x ∈ A } I_A = \{(x,x)\|\forall x \in A \} IA={(x,x)xA}

  • 关系的矩阵表示法:

设R是定义在笛卡尔积 A m × B n A_m\times B_n Am×Bn上的关系,则可用一个 m × n m\times n m×n的0-1矩阵 M R M_R MR来表示R,且:任意矩阵元 m i j = 1 m_{ij} = 1 mij=1,当且仅当 ( a i , b j ) ∈ R (a_i,b_j)\in R (ai,bj)R


  • 关系的逆:

    R − 1 = { ( x , y ) ∣ ( y , x ) ∈ R } R^{-1} = \{(x,y)|(y,x)\in R\} R1={(x,y)(y,x)R}

    => ( R − 1 ) − 1 = R (R^{-1})^{-1} = R (R1)1=R
    => M R − 1 = M R T M_{R^{-1}} = M_R^T MR1=MRT


  • 关系的复合运算:

    ( R R R A A A上的关系, S S S B B B上的关系)

    R ∘ S = { ( x , y ) ∣ ∃ z , 使 得 ( x , z ) ∈ R ∧ ( z , y ) ∈ S } R\circ S = \{(x,y)| \exist z,使得(x,z)\in R \wedge (z,y) \in S\} RS={(x,y)z,使(x,z)R(z,y)S}

    => 结合律: R 1 ∘ ( R 2 ∘ R 3 ) = ( R 1 ∘ R 2 ) ∘ R 3 R_1\circ (R_2\circ R_3) = (R_1\circ R_2) \circ R_3 R1(R2R3)=(R1R2)R3
    => ( R ∘ S ) − 1 = S − 1 ∘ R − 1 (R\circ S)^{-1} = S^{-1}\circ R^{-1} (RS)1=S1R1
    => M R ∘ S = M R × M S M_{R\circ S} = M_{R} \times M_{S} MRS=MR×MS


  • 关系的幂:

    R 0 = I A , R n + 1 = R ∘ R n R^0 = I_A, R^{n+1} = R \circ R^n R0=IA,Rn+1=RRn

    => R m ∘ R n = R m + n ; ( R m ) n = R m n R^{m}\circ R^{n} = R^{m+n};(R^{m})^n = R^{mn} RmRn=Rm+n;(Rm)n=Rmn
    => M R n = M R n M_{R^n} = M_{R}^n MRn=MRn


  • 二元关系相关性质:
性质集合定义矩阵特征
自反 ∀ x ∈ A , x R x \forall x \in A , xRx xA,xRx ∀ i , m i i = 1 \forall i, m_{ii} = 1 i,mii=1
反自反 ∀ x ∈ A , ¬ x R x \forall x \in A , \neg xRx xA,¬xRx ∀ i , m i i = 0 \forall i, m_{ii} = 0 i,mii=0
对称 ∀ x , y ∈ A , x R y → y R x \forall x,y \in A , xRy \rightarrow yRx x,yA,xRyyRx ∀ i 、 j , m i j = 1 ↔ m j i = 1 \forall i、j, m_{ij} = 1 \leftrightarrow m_{ji} = 1 ij,mij=1mji=1
反对称 ∀ x , y ∈ A , x R y ∧ y R x → x = y \forall x,y \in A , xRy \wedge yRx \rightarrow x = y x,yA,xRyyRxx=y ∀ i 、 j , m i j = 1 ∧ m j i = 1 → i = j \forall i、j, m_{ij} = 1 \wedge m_{ji} = 1\rightarrow i = j ij,mij=1mji=1i=j
传递 ∀ x , y , z ∈ A , x R y ∧ y R z → x R z \forall x,y,z \in A , xRy \wedge yRz \rightarrow x R z x,y,zA,xRyyRzxRz ∀ i 、 j 、 k , m i j = 1 ∧ m j k = 1 → m i k = 1 \forall i、j、k, m_{ij} = 1 \wedge m_{jk} = 1\rightarrow m_{ik} = 1 ijk,mij=1mjk=1mik=1

  • 笛卡尔积的运算律:
    (1) A × ∅ = ∅ × A = ∅ A\times \empty = \empty \times A = \empty A×=×A=
    (2)交换律: A × B = B × A A\times B = B \times A A×B=B×A
    (3)分配律:
    A × ( B ⋃ C ) = ( A × B ) ⋃ ( A × C ) A\times(B\bigcup C) = (A\times B) \bigcup (A\times C) A×(BC)=(A×B)(A×C)
    A × ( B ⋂ C ) = ( A × B ) ⋂ ( A × C ) A\times(B\bigcap C) = (A\times B) \bigcap (A\times C) A×(BC)=(A×B)(A×C)
    A ⋃ ( B × C ) = ( A ⋃ B ) × ( A ⋃ C ) A\bigcup(B\times C) = (A\bigcup B) \times (A\bigcup C) A(B×C)=(AB)×(AC)
    A ⋂ ( B × C ) = ( A ⋂ B ) × ( A ⋂ C ) A\bigcap(B\times C) = (A\bigcap B) \times (A\bigcap C) A(B×C)=(AB)×(AC)


二、常见关系:

  • 等价关系:

    满足自反、对称、传递的关系叫做等价关系

    => 等价类:等价关系中彼此两两等价的元素的集合
    => 商集:以等价关系中所有的等价类为元素组成的集合,是原集合的一个子集划分


  • 偏序关系:

    满足自反,反对称,传递的关系叫做偏序关系,其与其定义的集合一起称为偏序集

    对于偏序关系中任意有序对 ( x , y ) (x,y) (x,y),记 x ≤ y x\leq y xy
    且若对于集合任意两元素a,b,若存在一系列元素 c 1 , c 2 , . . . , c n ( n ≥ 0 ) c_1,c_2,...,c_n(n\geq 0) c1,c2,...,cn(n0)使得 a ≤ c 1 ≤ c 2 ≤ . . . ≤ c n ≤ b a\leq c_1 \leq c_2 \leq ...\leq c_n\leq b ac1c2...cnb,亦称 a ≤ b a \leq b ab,即 ≤ \leq 存在传递性,称可由 ≤ \leq 连接的两个元素是可比的

    => 极大元/极小元

    x是偏序集 ( A , ≤ ) (A,\leq) (A,)中的极大元当且仅当 ∀ y ∈ A , 若 x ≤ y , 则 x = y \forall y \in A, 若x\leq y,则x = y yA,xy,x=y
    x是偏序集 ( A , ≤ ) (A,\leq) (A,)中的极小元当且仅当 ∀ y ∈ A , 若 y ≤ x , 则 x = y \forall y \in A, 若y\leq x,则x = y yA,yx,x=y

    =>最大元/最小元

    x是偏序集 ( A , ≤ ) (A,\leq) (A,)中的最大元当且仅当 ∀ y ∈ A , y ≤ x \forall y \in A, y \leq x yA,yx
    x是偏序集 ( A , ≤ ) (A,\leq) (A,)中的最小元当且仅当 ∀ y ∈ A , x ≤ y \forall y \in A, x \leq y yA,xy

    =>上/下(确)界

    对于偏序集 ( A , ≤ ) (A,\leq) (A,)和A的子集B,若 ∃ y ∈ A , 对 ∀ x ∈ B , 有 x ≤ y \exist y \in A, 对\forall x \in B,有x\leq y yA,xB,xy,则称y是B的上界,如果B的上界构成的偏序集有最小元,则称其为B的上确界,记为 l u b ( B ) lub(B) lub(B)
    对于偏序集 ( A , ≤ ) (A,\leq) (A,)和A的子集B,若 ∃ y ∈ A , 对 ∀ x ∈ B , 有 y ≤ x \exist y \in A, 对\forall x \in B,有y\leq x yA,xB,yx,则称y是B的下界,如果B的上界构成的偏序集有最大元,则称其为B的下确界,记为 g l b ( B ) glb(B) glb(B)

    => 全序

    设R是A上的偏序关系,如果A中的任意两个元素都是可比的,则称R是A上的全序关系

    => 良序

    设R是A上的偏序关系,若A的任一非空子集均存在最小元,则称R为良序

    => 覆盖

    y覆盖x当且仅当 x ≤ y x\leq y xy且不存在 z ∈ A z\in A zA使得 x ≤ z ≤ y x\leq z\leq y xzy

    => 链/反链

    设B是偏序集 ( A , ≤ ) (A,\leq) (A,)的一个子集,若B中任意两个元素均可比,则称B构成了一个链,而若偏序集有限,则其最长链的长度称为该偏序集的高度
    设B是偏序集 ( A , ≤ ) (A,\leq) (A,)的一个子集,若B中任意两个元素均不可比,则称B构成了一个反链,而若偏序集有限,则其最长反链的长度称为该偏序集的宽度

    => Mirsky定理

    若有限偏序集 ( A , ≤ ) (A,\leq) (A,)的高度为h,则一定可将其划分为h个反链

    => 推论:对于任意h>0, 有限偏序集 ( A , ≤ ) (A,\leq) (A,)要么有一条长度大于h的链,要么有一条长度至少为 ∣ A ∣ h \frac{|A|}{h} hA的反链

    =>Diworth定理

    若有限偏序集 ( A , ≤ ) (A,\leq) (A,)的宽度为w, 则一定可将其划分为w个链

    => 推论:对于有限偏序集 ( A , ≤ ) (A,\leq) (A,),覆盖A所需的最小链数等于A的宽度



三、关系的闭包运算:

  • 闭包的定义:

    设R是非空集合A上的关系,在关系R中,可能有或无性质P,如自反,对称,传递,若存在包含R且满足性质P的关系S,且S是所有包含R且满足性质P的关系的交集,则称S是R关于性质P的闭包;

    特殊地,当性质P分别为:自反/对称/传递 时,分别记S = r ( R ) / s ( R ) / t ( R ) r(R) / s(R) / t(R) r(R)/s(R)/t(R)


  • 闭包的集合构造:

(1)R的自反闭包: r ( R ) = R ⋃ R 0 = R ⋃ I A r(R) = R \bigcup R^0 = R \bigcup I_A r(R)=RR0=RIA
(2)R的对称闭包: s ( R ) = R ⋃ R − 1 s(R) = R\bigcup R^{-1} s(R)=RR1
(3)R的传递闭包: t ( R ) = R ⋃ R 2 ⋃ R 3 ⋃ . . . = ⋃ { R n ∣ n ≤ ∣ A ∣ } t(R) = R\bigcup R^{2}\bigcup R^{3}\bigcup...=\bigcup\{R^n| n \leq |A|\} t(R)=RR2R3...={RnnA}


  • 闭包的矩阵构造:

(1)R的自反闭包: M r ( R ) = M R ⋁ M I A M_{r(R)} = M_R \bigvee M_{I_A} Mr(R)=MRMIA
(2)R的对称闭包: M s ( R ) = M R ⋃ M R T M_{s(R)} = M_R\bigcup M_R^{T} Ms(R)=MRMRT
(3)R的传递闭包: M t ( R ) = M R ⋁ M R 2 ⋁ M R 3 ⋁ . . . = ⋁ { M R n ∣ n ≤ ∣ A ∣ } M_{t(R)} = M_R\bigvee M_R^{2}\bigvee M_R^{3}\bigvee...=\bigvee\{M_R^n| n \leq |A|\} Mt(R)=MRMR2MR3...={MRnnA}


  • 传递闭包的算法构造:( Warshall算法)
Algorithm: Warshall
tR := MR
for k := 1 to n
	for i := 1 to n
		for j:= 1 to n
			tR[i,j] = tR[i,j](tR[i,k] ∩ tR[k,j])
return tR



  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
离散数学笔记 1. 集合 集合是离散数学的基础概念之一。一个集合是由一些元素组成的,这些元素可以是数、字母、符号、图形等等。 - 集合的表示方法 集合可以用大括号{}表示,元素之间用逗号隔开。例如,{1,2,3,4}表示一个由1、2、3、4四个元素组成的集合。 - 集合的基本运算 并集:表示集合A和集合B中所有元素的集合,用符号∪表示。例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。 交集:表示同时属于集合A和集合B的元素的集合,用符号∩表示。例如,A={1,2,3},B={3,4,5},则A∩B={3}。 差集:表示属于集合A但不属于集合B的元素的集合,用符号-表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 补集:表示集合A中不属于集合B的元素的集合,用符号A-B表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 2. 命题逻辑 命题逻辑是一种研究命题之间的逻辑关系和推理规律的数学分支。命题是指可以判断真假的陈述句。 - 命题的表示方法 命题可以用字母或符号表示。例如,P表示“今天是星期天”。 - 命题的逻辑运算 非运算:表示取反,用符号¬表示。例如,¬P表示“今天不是星期天”。 合取运算:表示“且”,用符号∧表示。例如,P∧Q表示“今天是星期天并且明天是星期一”。 析取运算:表示“或”,用符号∨表示。例如,P∨Q表示“今天是星期天或者明天是星期一”。 蕴含运算:表示“如果……那么”,用符号→表示。例如,P→Q表示“如果今天是星期天,那么明天是星期一”。 等价运算:表示两个命题具有相同的真值,用符号↔表示。例如,P↔Q表示“今天和明天都是星期天”。 3. 谓词逻辑 谓词逻辑是一种研究谓词之间的逻辑关系和推理规律的数学分支。谓词是指可以应用于一个或多个对象的属性或关系。 - 谓词的表示方法 谓词可以用字母或符号表示。例如,A(x)表示“x是一个人”。 - 谓词的逻辑运算 量词:表示谓词适用于某些对象或全部对象。有普遍量词∀和存在量词∃两种。例如,∀x A(x)表示“所有的x都是人”,∃x A(x)表示“存在一个x是人”。 连接词:表示谓词之间的逻辑关系。有合取词∧、析取词∨、蕴含词→、等价词↔等四种。例如,A(x)∧B(x)表示“x既是人又是男性”,A(x)∨B(x)表示“x是人或者x是男性”。 4. 图论 图论是一种研究图和图的性质的数学分支。图是由点和边组成的结构,点表示对象,边表示对象之间的关系。 - 图的基本概念 无向图:所有的边没有方向。 有向图:所有的边有方向。 简单图:没有自环和重边的图。 完全图:每个点都与其他点有边相连的图。 - 图的基本运算 路径:表示通过边相连的一系列点的序列。 回路:表示起点和终点相同的路径。 连通图:表示任意两个点之间都存在路径的图。 强连通图:表示任意两个点之间都存在有向路径的图。 生成树:表示包含所有点和最少边的树。 最短路径:表示两个点之间边权和最小的路径。 5. 组合数学 组合数学是一种研究离散结构之间的组合关系和计数方法的数学分支。 - 排列组合 排列:从n个不同元素中取出m个元素进行排列的方式数,用符号P(n,m)表示。 组合:从n个不同元素中取出m个元素进行组合的方式数,用符号C(n,m)表示。 - 二项式定理 二项式定理是组合数学中的一个重要公式,表示(a+b)^n的展开式中各项系数的规律。其公式为: (a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + … + C(n,n)b^n 其中C(n,m)表示从n个不同元素中取出m个元素进行组合的方式数。 - 错排问题 错排问题是组合数学中的一个经典问题,表示n个元素的排列中,恰好有m个元素排列正确的方式数。其公式为: D(n,m)=(n-m)(D(n-1,m-1)+D(n-2,m-1)) 其中D(n,m)表示n个元素的排列中,恰好有m个元素排列正确的方式数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值