出处:ECCV 2022,IIT意大利技术研究院,Pattern Analysis and Computer Vision (PAVIS)组
Code:https://github.com/IIT-PAVIS/PoserNet
简述:一般估计图像间的位姿关系是通过特征匹配完成的;本文通过使用物体区域来改进位姿估计问题,作者提出了一种轻量级的图神经网络Pose Refiner Network (PoserNet),来指导两两相对相机的位姿;PoserNet利用跨多个视图的物体区域(即bounding boxes)之间的关联来全局改进稀疏连接的视图;作者在7-Scenes数据集上评估不同大小的图形,并展示了该过程如何有利于基于优化的运动平均算法,与基于bounding boxes获得的初始估计相比,将旋转的中值误差提高62°。