Ubuntu20.04下GraspNet复现流程

Ubuntu20.04中GraspNet复现流程

🚀非常重要的环境配置🚀

  • ubuntu 20.04
  • cuda 11.0.1
  • cudnn v8.9.7
  • python 3.8.19
  • pytorch 1.7.0
  • numpy 1.23.5

详细的信息如下:

Image

笔者在复现的过程中遇到了许多的坑,现在记录一下,来帮助希望也能够复现的同学。

1.安装cuda和cudnn

具体可以参考这篇:ubuntu配置多版本cuda+cudnn环境,及版本切换方法

2.安装pytorch

具体可以参考这篇:【Linux】Ubuntu20.04版本配置pytorch环境2023.09.05【教程】

3.编译graspnetAPI

直接参考官方给的流程就好,参考这里:graspnet-baseline

然后下载官方给的预训练权重,运行demo

如果出现问题:

ImportError: numpy.core.multiarray failed to import ( auto-generated, because you didn’t call ‘numpy.import _array()’ after cimporting numpy; use ‘numpy.import array’ to disable if you are certain you don’t need it)

或者其他numpy相关的问题,我们可以把numpy的版本换成numpy==1.23.5,而不是默认的numpy==1.20.3

直接在你的虚拟环境中

pip install numpy==1.23.5

即可完成替换,然后再运行demo

sh command_demo.sh

即可出现以下的结果:

Image

Reference

[1]复现GraspNet遇到的问题-解决方法!
[2]GraspNet-baseline复现----Linux-Ubuntu

<think>嗯,用户想在Ubuntu复现GraspNet项目,我需要提供详细的安装配置教程。首先,我得回忆一下GraspNet相关的依赖和环境配置。记得之前看到过需要Ubuntu 20.04,可能还有Python 3.7或3.8。用户可能已经安装了Anaconda,但需要确认版本。 然后是项目本身的依赖库,比如PyTorch、Open3D,还有可能遇到的opendr问题。之前有用户提到过opendr在Ubuntu 16.04和Python 3.7下的配置问题,可能需要参考简书的解决方案。需要提醒用户安装mesa和GL库,可能还需要设置环境变量。 接下来是数据准备,GraspNet数据集很大,用户可能需要下载并解压到指定目录。可能需要使用gdown或者官方提供的脚本。这部分需要给出具体的命令,确保用户知道如何操作。 然后是编译自定义的CUDA算子,这部分容易出错。需要安装正确的CUDA版本,比如11.3,并且正确设置PATH和LD_LIBRARY_PATH。编译成功后,用户需要测试是否导入成功。 训练和测试步骤也要详细说明,包括下载预训练模型,运行train.py和eval.py,并处理可能的数据路径问题。用户可能会遇到CUDA内存不足的情况,需要建议调整batch size或者检查环境配置。 最后,常见问题部分要涵盖opendr错误、CUDA版本不匹配、数据集路径错误,以及GL库缺失的情况。引用之前提到的解决方案链接,比如简书的配置指南和GraspNet-baseline的复现教程。 要确保步骤清晰,命令准确,避免用户走弯路。同时,检查是否有遗漏的依赖项,比如可能需要的其他库如scipy或者matplotlib。另外,提醒用户注意Python版本和虚拟环境的使用,避免与其他项目冲突。</think>以下是在 Ubuntu 系统中复现 GraspNet 项目的详细安装配置教程,结合引用资料和实际复现经验整理: ### 一、环境准备 1. 系统要求:推荐 Ubuntu 20.04 LTS + Python 3.7/3.8 2. 创建虚拟环境: ```bash conda create -n graspnet python=3.7 conda activate graspnet ``` 3. 安装基础依赖: ```bash sudo apt-get install libgl1-mesa-glx libosmesa6 libglew-dev ``` ### 二、项目依赖安装 1. 安装 PyTorch (建议 CUDA 11.3 版本): ```bash pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html ``` 2. 安装 Open3D 和 OpenDR: ```bash pip install open3d==0.9.0 pip install opendr==0.78 # 注意需要配置GL库[^2] ``` ### 三、数据集准备 1. 下载 GraspNet 数据集: ```bash gdown https://drive.google.com/uc?id=1VBtCUBX6hBqg2R4rqAg80WESr6rlU3wJ unzip graspnet.zip -d ./dataset ``` 2. 生成数据集索引文件: ```python python tools/generate_dataset_index.py --dataset_root ./dataset ``` ### 四、编译自定义 CUDA 算子 ```bash cd graspnet_baseline/layers/chamfer_distance python setup.py install # 验证编译是否成功 python -c "from layers.chamfer_distance import ChamferDistance" ``` ### 五、训练与测试 1. 下载预训练模型: ```bash wget https://cloudstor.aarnet.edu.au/plus/s/9axKqg9zU5d1HtK/download -O checkpoint.tar ``` 2. 启动训练: ```bash python train.py --dataset_root ./dataset --checkpoint_path ./checkpoint ``` 3. 运行测试: ```bash python eval.py --dataset_root ./dataset --checkpoint ./checkpoint/model_30.pth ``` ### 常见问题解决 1. **OpenDR 报错**:需配置`LD_PRELOAD`环境变量 ```bash export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGL.so.1 ``` 2. **CUDA 版本不匹配**:确认使用 CUDA 11.3 并检查环境变量设置 ```bash export PATH=/usr/local/cuda-11.3/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH ``` 3. **数据集路径错误**:检查`dataset_index.yml`文件中的绝对路径是否修改为实际路径
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值