一直想看非线性最小二乘问题,但是每次都看得“不求甚解”、“零零散散”,刚好在网上下载到了一个英文版的教程:METHODS FOR NON-LINEAR LEAST SQUARES PROBLEMS(点此下载.pdf),感觉介绍的还不错,内容也没有特别长,所以就自己翻译了一版,供大家交流,如有错误还请指正。
在本册内容中,我们讨论以下问题:
定义1.1 最小二乘法
找到一个局部极小值
,使得对于
的函数
:
其中,
(
) 是给定的函数,
。
例1:数据拟合是一类非常重要的最小二乘问题。如图1.1所示的数据点,我们可以进一步地给出它的拟合模型:
![]()
这个模型包含四个参数: 。我们假设存在一个
使得:
![]()
其中, 表示纵坐标误差,类似“白噪音”。

对任何一组,我们都可以计算出残差(residuals):
对于最小二乘拟合,我们通过使得残差平方之和最小来确定,
的图像如图1.1中的实线所示。
最小二乘问题是一般问题的一个特殊变体:给定一个函数(
),找到
的一组参数,使得目标函数(objective function)或成本函数(cost function)的值最小。
定义1.2 全局最小值(Global Minimizer)
总体来说,这个问题很难解决,我们只能将其简化为一个寻找的局部最小值的问题,也就是说,在一个给定大小为
的区域内找到一个参数向量,使得
在该区域内有最小值,其中
是一个非常小的正数。
定义1.3 局部最小值(Local Minimizer)
在接下来的介绍中,我们将讨论优化中的一些基本概念,第2章简要回顾了为一般成本函数寻找局部最小值的方法。更多详情请参考Frandsen等人(2004)的研究论文。在第三章中,我们给出了专门针对最小二乘问题的方法。
我们假设目标函数是光滑可微的,那么就可以使用下面的泰勒展开式(Taylor expansion):
(1.4a)
其中,g表示梯度:
(1.4b)
H 代表海森矩阵(Hessian):
(1.4c)
如果 是一个局部极小值点且
非常小,那么点
处的
值不会比现在的
值更小。把这个结果与(1.4a)结合起来,我们可以得到:
定理1.5 局部最小值的必要条件
如果
是一个局部极小值点,那么有:
我们用一个特别的名字来命名满足上述条件的点:
定义1.6 驻点
如果点
处满足
那么
就被称为
的驻点。
因此,局部极小化也是一个驻点,但局部极大化也是一个驻点。既不是局部极大值也不是局部极小值的驻点称为鞍点(saddle point)。为了确定给定的驻点是否是局部极小值点,我们需要在泰勒级数(1.4a)中包含二阶项。
(1.7)
根据海森矩阵的定义(1.4c), 是对称矩阵。如果我们要求
是正定(positive definite)的,那么它的特征值大于某个大于0的数
,并且有:
![]()
这表明,在足够小的情况下,式(1.7)右边第三项将由第二项决定。所以我们得到:
定理1.8 局部最小值的充分条件
如果驻点
满足
是正定的,那么
是一个局部极小值点。
如果是负定的(negative definite),那么
是一个局部极大值。如果
是不定矩阵(特征值既有正数又有复数),那么
是一个鞍点。
本文深入探讨了非线性最小二乘问题的基本概念和解决方案,包括定义、局部和全局最小值的概念,以及如何通过泰勒展开式和海森矩阵判断驻点性质。通过数据拟合实例,阐述了如何确定参数使残差平方和最小,适用于信号处理、机器学习等领域。



1919

被折叠的 条评论
为什么被折叠?



