YOLOv10改进 | Conv篇 | YOLOv10引入AKConv卷积和C2f-AKConv(既轻量又提点)

YOLOv8v10专栏限时99元订阅链接:限时99元去b站关注:AI缝合怪订阅YOLOv8v10 创新改进高效涨点+持续改进300多篇

(订阅的小伙伴,终身免费享有后续YOLOv11或是其他版本的改进专栏)

目录

一、AKConv模块介绍

以下是关于AKConv卷积模块原理及作用的几点总结:

二、AKConv核心代码

 三、手把手教你添加AKConv和C2f-AKConv模块和修改task.py文件

四、创建涨点yaml配置文件

修改一 : yolov10_AKConv.yaml 

修改二: yolov10_C2f-AKConv.yaml  

五、本文总结


一、AKConv模块介绍

2ba8deb3e2eb4ac1a7c3cfcef2c484e3.png

论文地址:论文地址点击此处即可跳转

摘要:基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷。一方面,卷积操作局限于本地窗口,无法从其他位置捕获信息,其采样形状是固定的。另一方面,卷积核的大小固定为 k × k,这是一个固定的方形,参数的数量往往随着大小而呈方形增长。很明显,目标的形状和大小在不同的数据集和不同的位置是不同的。具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标。针对上述问题,本研究探讨了可更改内核卷积 (AKConv),它为卷积内核提供了任意数量的参数和任意采样形状,为网络开销和性能之间的权衡提供了更丰富的选择。在 AKConv 中,我们通过新的坐标生成算法为任意大小的卷积核定义初始位置。为了适应目标的变化,我们引入了偏移量来调整每个位置的样本形状。此外,我们通过使用具有相同大小和不同初始采样形状的 AKConv 来探索神经网络的效果。AKConv 完成了通过不规则卷积运算进行高效特征提取的过程,为卷积采样形状带来了更多的探索选择。在代表性数据集 COCO2017、VOC 7+12 和 VisDrone-DET2021 上的目标检测实验充分展示了 AKConv 的优势。AKConv 可以作为即插即用的卷积运算来代替卷积运算,从而提高网络性能。

以下是关于AKConv卷积模块原理及作用的几点总结:

  1. 问题背景:标准卷积操作存在局限性,只能在局部窗口内工作,不能从其他位置捕获信息,并且其采样形状固定不变。此外,卷积核通常为固定大小的方形,参数数量随尺寸增加而迅速增长。

  2. 解决方案:为了解决上述问题,提出了AKConv,一种可变卷积操作,它允许卷积核拥有任意数量的参数和任意采样形状,从而提供了更灵活的网络设计选择。

  3. 实现机制:AKConv首先通过新的坐标生成算法定义了任意大小卷积核的初始位置。然后,通过引入偏移量来调整每个位置处的样本形状,使卷积核能够适应不同目标的变化。

  4. 效果分析:通过对YOLOv5n模型进行实验,在不同的初始采样形状下观察到网络表现有所不同,表明不同初始采样形状的AKConv对网络性能有影响。通过定义平均偏移量(Average Offset),可以量化每个给定位置处的偏移变化。

  5. 性能比较:与DSConv相比,AKConv在相同大小条件下表现出更好的性能,因为DSConv没有针对任意大小的卷积核进行优化,而AKConv则提供了丰富的卷积核选择和探索能力,有效提升了网络性能。

  6. 实验结果:在多个数据集上进行了实验,包括COCO2017和VisDrone-DET2021,结果显示不同的初始采样形状对于特定网络和数据集来说,对提高网络性能很重要。

AKConv旨在通过引入灵活的卷积核形状和参数数量来改进卷积操作,从而提高深度学习模型的性能。

AKconv模块结构图:

cdc2b0beea894542a673d5d1032acec2.png

二、AKConv和C2f_AKConv核心代码

import torch.nn as nn
import torch
from einops import rearrange
import math

__all__ = ['AKConv', 'C2f_AKConv']

class AKConv(nn.Module):
    def __init__(self, inc, outc, num_param, stride=1, bias=None):
        super(AKConv, self).__init__()

        self.num_param = num_param
        self.stride = stride
        self.conv = nn.Sequential(nn.Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias),
                                  nn.BatchNorm2d(outc),
                                  nn.SiLU())  # the conv adds the BN and SiLU to compare original Conv in YOLOv5.
        self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)
        nn.init.constant_(self.p_conv.weight, 0)
        self.p_conv.register_full_backward_hook(self._set_lr)

    @staticmethod
    def _set_lr(module, grad_input, grad_output):
        grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
        grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))

    def forward(self, x):
        # N is num_param.
        offset = self.p_conv(x)
        dtype = offset.data.type()
        N = offset.size(1) // 2
        # (b, 2N, h, w)
        p = self._get_p(offset, dtype)

        # (b, h, w, 2N)
        p = p.contiguous().permute(0, 2, 3, 1)
        q_lt = p.detach().floor()
        q_rb = q_lt + 1

        q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
        q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)

        # clip p
        p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)

        # bilinear kernel (b, h, w, N)
        g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
        g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
        g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
        g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))

        # resampling the features based on the modified coordinates.
        x_q_lt = self._get_x_q(x, q_lt, N)
        x_q_rb = self._get_x_q(x, q_rb, N)
        x_q_lb = self._get_x_q(x, q_lb, N)
        x_q_rt = self._get_x_q(x, q_rt, N)

        # bilinear
        x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
                   g_rb.unsqueeze(dim=1) * x_q_rb + \
                   g_lb.unsqueeze(dim=1) * x_q_lb + \
                   g_rt.unsqueeze(dim=1) * x_q_rt

        x_offset = self._reshape_x_offset(x_offset, self.num_param)
        out = self.conv(x_offset)

        return out

    # generating the inital sampled shapes for the AKConv with different sizes.
    def _get_p_n(self, N, dtype):
        base_int = round(math.sqrt(self.num_param))
        row_number = self.num_param // base_int
        mod_number = self.num_param % base_int
        p_n_x, p_n_y = torch.meshgrid(
            torch.arange(0, row_number),
            torch.arange(0, base_int), indexing='xy')
        p_n_x = torch.flatten(p_n_x)
        p_n_y = torch.flatten(p_n_y)
        if mod_number > 0:
            mod_p_n_x, mod_p_n_y = torch.meshgrid(
                torch.arange(row_number, row_number + 1),
                torch.arange(0, mod_number), indexing='xy')

            mod_p_n_x = torch.flatten(mod_p_n_x)
            mod_p_n_y = torch.flatten(mod_p_n_y)
            p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))
        p_n = torch.cat([p_n_x, p_n_y], 0)
        p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)
        return p_n

    # no zero-padding
    def _get_p_0(self, h, w, N, dtype):
        p_0_x, p_0_y = torch.meshgrid(
            torch.arange(0, h * self.stride, self.stride),
            torch.arange(0, w * self.stride, self.stride), indexing='xy')

        p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)

        return p_0

    def _get_p(self, offset, dtype):
        N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)

        # (1, 2N, 1, 1)
        p_n = self._get_p_n(N, dtype)
        # (1, 2N, h, w)
        p_0 = self._get_p_0(h, w, N, dtype)
        p = p_0 + p_n + offset
        return p

    def _get_x_q(self, x, q, N):
        b, h, w, _ = q.size()
        padded_w = x.size(3)
        c = x.size(1)
        # (b, c, h*w)
        x = x.contiguous().view(b, c, -1)

        # (b, h, w, N)
        index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y
        # (b, c, h*w*N)

        index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)

        # 根据实际情况调整
        index = index.clamp(min=0, max=x.shape[-1] - 1)

        x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)

        return x_offset

    #  Stacking resampled features in the row direction.
    @staticmethod
    def _reshape_x_offset(x_offset, num_param):
        b, c, h, w, n = x_offset.size()
        # using Conv3d
        # x_offset = x_offset.permute(0,1,4,2,3), then Conv3d(c,c_out, kernel_size =(num_param,1,1),stride=(num_param,1,1),bias= False)
        # using 1 × 1 Conv
        # x_offset = x_offset.permute(0,1,4,2,3), then, x_offset.view(b,c×num_param,h,w)  finally, Conv2d(c×num_param,c_out, kernel_size =1,stride=1,bias= False)
        # using the column conv as follow, then, Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias)

        x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')
        return x_offset

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))


class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = AKConv(c_, c2, k[1], 1, g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C2f_AKConv(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        x = self.cv1(x)
        x = x.chunk(2, 1)
        y = list(x)
        # y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

 三、手把手教你添加AKConv和C2f-AKConv模块和修改task.py文件

1.首先在yolov10/ultralytics/nn/newsAddmodules创建一个.py文件

bc156be0644243b6b98d845ee92a4fbc.png

2.在yolov10/ultralytics/nn/newsAddmodules/__init__.py中引用

347baa2710ea44c5b3effd3bd4e83015.png

3.修改task.py文件 :在task.py中找到这个参数方法 def parse_model(d, ch, verbose=True):

4cc00438c73646b79c87c94adefee187.png

四、创建涨点yaml配置文件

修改一 : yolov10_AKConv.yaml 

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, AKConv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, AKConv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, AKConv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

 正常运行:

d5504494a5344345a5f088d7cf29b23a.png

修改二: yolov10_C2f-AKConv.yaml  

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f_AKConv, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f_AKConv, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f_AKConv, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f_AKConv, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f_AKConv, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f_AKConv, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f_AKConv, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

 正常运行:

e4af902a525c43689e694cade2961c20.png

五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,本专栏会持续更新300+创新改进点,大家尽早关注有效涨点专栏,带着大家快速高效发论文!如果大家觉得本文能帮助到你了,订阅本专栏,关注后续更多的更新~ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值