综述:
1.点视图:
- PointNet/PointNet++,Point-RCNN,3D SSD
2.俯视图:
- VoxelNet,SECOND,PIXOR,AFDet
3.前视图:
- LaserNet,RangeDet
4.多视图融合:
- 俯视图+点视图:PointPillar,SIENet,PV-CNN
- 俯视图+前视图:MV3D,RSN
一、PointNet
1.核心思路:点云特征提取
-
MLP(多个全连接层)提取点特征:n个点,特征由3维提升到1024维
-
MaxPooling得到全局体征:1024维
2、端对端学习,对点云进行分类/意义分割
3、物体检测:Clutering(聚类)得到候选+PointNet分类
输入的数据,先对点云做一个变换,把坐标系统一,点云在一个坐标系之下,然后对点进行单点特征提取,这里使用的是全连接层,两个阶段的全连接层,使特征从3维提升到1024维。随后进行全局的特征提取,利用MaxPooling,最后对其进行点云分类(SVM)或者点云分割
二、PointNet++
1.在物体检测方向上进行扩展:Clustering+PointNet
- 用聚类的方式来产生多个候选点,每个候选点集采用PointNet来提取点的特征
- 上述过程重复多次:上一层的点集经过全集特征提取后看作下一层的点(Set Abstraction,SA)
- 点特征具有较大的感受野,包含周围环境的上下文信息
三、PointNet和PointNet++中存在的问题
- 无法利用视觉领域成熟的检测框架,比如Faster-RCNN,YOLO等
- Clustering部分的计算复杂度较高,而且难以并行处理
四、Point-RCNN
1.点处理+Faster RCNN
- PointNet++提取点的特征,同时进行前景分割, 以区分物体点和背景点
- 每个前景点生成一个3D候选框(PointNet++采用聚类生成候选框)
- 对每个候选框内的点进行Pooling,最后输出候选框所属的类别,并修正其位置和大小
2.运行速度瓶颈
- PointNet++需要将点集特征映射回原始点云(Feature Propation),因为聚类生成的点集无法很好的覆盖所有物体
- 全局搜索属于每个物体候选的点
五、3D SSD
1.提高聚类的质量
- 同时考虑点与点之间在几何和特征空间的相似度
- 聚类的输出可以直接用来生成物体候选
2.避免重复计算
- 聚类算法输出每个点cluster的中心和领域点
- 避免全局搜索物体候选和点之间的匹配关系
六 、总结和对比
- PointNet++的主要问题就是运行速度太慢
- 速度的瓶颈在于聚类过程中需要将点集特征映射回原始点云
- Point RCNN和3D SSD的改进主要在于提高运行速度
ntNet++的主要问题就是运行速度太慢
- 速度的瓶颈在于聚类过程中需要将点集特征映射回原始点云
- Point RCNN和3D SSD的改进主要在于提高运行速度