-
TensorGCN:
- 图的构建:TensorGCN不同于构建单个全局语料库级别的图,它构建了三个独立的图:
- 顺序图:应用点间互信息(PMI)值,类似于TextGCN。
- 句法图:使用Stanford CoreNLP解析器,在单词之间建立具有更高依赖关系概率的边。
- 语义图:从经过训练的长短时记忆(LSTM)模型中提取语义特征,并连接具有高相似度的单词。
- 图的组合:这三个图共享相同的TF-IDF值用于单词-文档边,但单词-单词边具有不同的值。传播包括图内传播和图间传播。模型首先在三个图上分别应用GCN层作为图内传播。然后,将三个图上的相同节点视为虚拟图,再应用另一层GCN层作为图间传播。
用一句话来概括,如果用计算机网络来打比方,单词结点类似于中间设备,它们通过复杂的路由器、交换机等进行连接,将终端设备,即文档结点,连接起来。构建三个拓扑大致类似的计算机网络,只有中间设备连接不同。
在三个平行的计算机网络上,先进行消息的传播,然后每个垂直位置相应的终端即文档结点,构成vlan,将不同终端收集到的信息在vlan内进行重组,进行网络间的消息通信。
-
ME-GCN(Multi-dimensional Edge-Embedded GCN):
- 图的构建:ME-GCN旨在充分利用语料库信息并分析图中的丰富关系信息。它构建了一个包含多维单词-单词、单词-文档和文档-文档边的图。首先,在给定语料库上训练Word2vec和Doc2vec嵌入,然后使用训练嵌入的每个维度的相似性来构建多维边。训练嵌入还用作图节点的输入嵌入。在传播过程中,首先在每个维度上应用GCN,然后将不同维度上的表示要么连接起来,要么馈送到池化方法中以获取每个层的最终表示。
与上面类似,打个比方,该网络就类似于每条网线是双绞线甚至是多绞线,在每条线内进行消息传播。最后终端即文档结点将从不同网线获取的消息进行整合,用于下一步操作。
这两种模型都旨在利用文本数据中的语义和关系信息,以支持各种自然语言处理任务。TensorGCN强调语义、句法和顺序信息的整合,而ME-GCN关注多维嵌入和边的构建。它们都使用图神经网络(GCN)来进行信息传播和学习。