《Smart soil image classification system using lightweight convolutional neural network》

期刊:ESWA

年份:2024

摘要

在农业领域,土壤分类是一项重要的任务,它有助于土壤耕作、作物选择、水分水平估计和自动化。通常,土壤分类是借助地理参考和地图土壤的物理、化学和生物特征进行的。传统的土壤分类方法和实验室分类方法耗时长、成本高、要求熟练。本研究提出了一种利用土壤图像快速、经济有效地预测土壤类型的方法。已经创建了一个土壤图像数据集,用于使用图像对土壤类型进行分类。为了创建土壤图像数据集,从印度安得拉邦不同的农田收集了392个土壤样本。收集到的样品被干燥,土壤类型在实验室中使用筛和比重计分析确定。建立了一个成像装置,使用智能手机摄像头捕捉干燥土壤样本的图像。对采集到的图像进行预处理:提取HSV bins中的RGB和V值,利用自适应直方图突出土壤图像的纹理特征;提出了一种新的轻量级卷积神经网络lightsoilnet,用于对5种土壤样本图像进行分类:沙、黏土、壤土、壤土沙和砂壤土。所提网络适用于不平衡土壤图像数据集。将所提网络与最新的轻量级和预训练深度学习网络进行测试和比较。所提出的Light-SoilNet网络架构在土壤分类中产生了97.2%的总体精度。实验结果表明,该模型利用图像和深度学习技术对土壤类型进行分类的效果较好。

Introduce

  • 开发土壤图像数据库,通过智能手机采集图像,并根据实验室分析,按照特定标准进行标记。
  • 将砂土、粘土土、壤土、砂质壤土和与农业土壤有关的壤土类型进行分类,而不是将砂土和团聚土进行分类。
  • 将HSV、RGB提取和自适应直方图技术应用于数据库,突出土壤样本图像的纹理特征。
  • 提出了一种新的轻量级网络,旨在以更少的层数、可学习的参数、迭代次数、网络大小和更好的性能对土壤图像进行分类。
  • 将所提模型与预训练网络、轻量级网络以及最新模型进行性能比较,评估其性能指标。

在以前的请练级方法中,研究人员都希望减少预训练模型,而不是实现更小、更快的深度学习网络。预训练网络继承了输入图像大小预定义的局限性,并且由于卷积特征提取块的维度依赖于输入图像大小,网络无法处理随机大小的图像。本文设计了一个用于土壤分类的深度轻量级网络,而不是压缩现有的预训练网络。

Method

包括以下步骤:提取土壤图像的感兴趣区域,预处理和增强,以及对土壤图像进行分类的Light-SoilNet。对土壤数据集进行处理,提取土壤图像的感兴趣区域。对ROI图像进行预处理,突出纹理并扩充数据。

 2.1 ROI提取

通过HSV颜色阈值技术,将土壤图像中的土壤与背景分离,得到只包含土壤的ROI图像。这样,后续的处理和分析将只关注这些区域,从而提高分类的准确性。

拓展阅读:

HSV颜色阈值技术是一种基于颜色空间的图像分割方法,它利用Hue(色相)、Saturation(饱和度)、Value(亮度)这三个颜色维度来区分和提取图像中的特定区域。

颜色空间理解

  • Hue(色相):表示颜色的基本属性,如红、绿、蓝等,通常以角度表示,范围是0°至360°。
  • Saturation(饱和度):表示颜色的纯度,饱和度越高,颜色越纯;饱和度越低,颜色越接近灰色。
  • Value(亮度):表示颜色的明暗程度,亮度越高,颜色越亮;亮度越低,颜色越暗。

选择HSV颜色空间:相比于RGB颜色空间,HSV颜色空间更适合于颜色的识别和分割,因为它更接近人类对颜色的感知。

确定阈值:在HSV颜色空间中,为每个维度(H、S、V)设定一个阈值范围。这些阈值是根据目标物体(本研究中是土壤)的颜色特征来确定的。

应用阈值:通过比较图像中每个像素的HSV值与预设的阈值,可以确定哪些像素属于目标颜色范围。这通常涉及到创建一个掩膜(mask),掩膜上的像素点表示满足阈值条件的区域。

图像分割:将满足阈值条件的像素保留下来,其他像素设置为透明或背景色,从而实现对目标区域的分割。

2.2 预处理

预处理技术如下:自适应直方图,从HSV图像中提取值,从灰度ROI图像中单独提取RGB通道。

本文选择R、G、B三个颜色通道分别作为特征提取通道,而不是作为RGB颜色通道。自适应直方图突出了图像的边缘和角点特征。在HSV颜色空间中选择` V `值,因为它表示颜色的亮度随着饱和度的变化而变化,这再次给出了一个具有颜色亮度的灰色通道图像。该模型对上述特征的土壤类型分类效果较好。

2.2.1 自适应直方图

将图像转换为灰度图像后,应用自适应直方图技术来增强图像的对比度,特别是增强边缘和角落的特征,这有助于突出土壤的纹理特征。

2.2.2 HSV颜色空间处理

在HSV颜色空间中,对图像应用了以下操作:

  • V值提取:Value(V)通道代表了颜色的亮度,有助于识别土壤样本的纹理特征。
  • HSV直方图:通过对Hue、Saturation、Value三个维度进行量化,增强了土壤颜色的区分度。

2.2.3 RGB通道提取

  • 从灰度ROI图像中分别提取红色(R)、绿色(G)和蓝色(B)通道,以突出土壤在每个颜色通道中的纹理特征。
图2 预处理图片,(a)自适应直方图。(b-d) R、G、B通道。(e)从HSV中提取V。

2.3 网络架构

提出的Light-SoilNet架构包括多层土壤分类,通过减少参数数量和提高模型效率。该架构中使用的层有卷积层、ReLU层、批处理归一化层、最大池化层、dropout层、完全连接层和softmax层。该网络是一个非线性模型,由于其独特的卷积性,具有优势的模型表征能力,并且池化结构可以从复杂的输入信息中提取本质特征。

所提出的Light-SoilNet架构包括6个卷积、ReLU和批量归一化层,4个最大池化层,2个dropout和全连接层,以及一个用于分类土壤类型的softmax。

图3 Light-SoilNet

 Result

将Light-SoilNet与其他预训练的轻量级网络(如MobileNet-v2、MobileNet-v3、EfficientNet-B0、ShuffleNet)和深度学习网络(如Inception-v3、Vgg-19、ResNet-50、AlexNet)进行了比较,Light-SoilNet在分类准确性上优于这些现有的模型。

 Conclusion

提出了一种新的轻量级的基于cnn的网络架构,用于对五种不同类型的土壤图像进行分类。建立了土壤图像数据库IRSID,通过获取印度安得拉邦不同地区的土壤样本来获取土壤图像。收集到的土样在土力学实验室使用筛析和比重计方法进行测试,以确定土壤的质地。利用提出的Light-SoilNet网络对5种不同类型的土壤进行分类。该模型的性能与预训练的轻量级网络和深度学习预训练网络相比,所提模型的准确率有效地高于目前最先进的模型。由于这些类别的土壤图像较少,壤土和壤土砂的真阳性率较低。Light-SoilNet模型的性能使用各种性能指标进行测量,如每个土壤类别的准确率、精度、召回率和f1 -分数,表明所提出的模型比每个类别的轻量级网络和预训练的深度学习模型表现更好。通过减少系统的参数和复杂度,获得了更好的性能。所提Light-SoilNet网络的计算时间高于预训练的深度学习和轻量级网络。预训练深度学习和轻量级网络的权重是预定义的,而所提出的网络在模型训练和测试时需要更新权重,导致计算时间增加。

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值