SC-LeGO-LOAM建图(Ubuntu18.04 melodic)

记录第一条博客
最近回来想尝试LOAM跑单线雷达 不知各路大神有没有成功实现的 顺便整理下之前跑的这项great work
网上有关LeGO_LOAM的教程已经铺天盖地了 但是能分享下自己的实验成果也是很开心:)

How to use

GTSAM 必备 直接按教程安装没问题
Install GTSAM https://github.com/borglab/gtsam
mkdir -p catkin_ws/src
cd catkin_ws/src/
git clone https://github.com/irapkaist/SC-LeGO-LOAM
cd …
catkin_make
打开src\SC-LeGO-LOAM\SC-LeGO-LOAM\LeGO-LOAM\include\utility.h

extern const string pointCloudTopic = "/os1_points";
extern const string imuTopic = "/imu/data";

修改为自己的点云数据和imu 以及保存文件路径

extern const string fileDirectory = "..";

我们使用16线雷达注释掉Ouster OS1-64所有项 打开 VLP-16所有项 重新编译即可
跑过很多雷达 基本市面上大部分十六线雷达配合imu效果都不错
然后 source devel/setup.bash
roslaunch lego_loam run.launch
至此里我在IPC上已经没有问题但是当同样的功能包拿到虚拟机中rviz却不显示点云
这里我重新配置了test.rviz 这里记录下原test.rviz中主题配置
/aft_mapped_to_init // Odometry mapOp pub
/corrected_cloud // ICP cloud
/full_cloud_info // image pub
/full_cloud_projected // Velodyne image pub
/ground_cloud // ground cloud image pub
/history_cloud // History Key Frames
/integrated_to_init
/key_pose_origin // Trajectory √运行轨迹 mapOp pub
/laser_cloud_corner_last feature pub
/laser_cloud_flat // Surface (yellow) feature pub
/laser_cloud_less_flat // Surface Features (pink) √雷达实时点云 feature pub
/laser_cloud_less_sharp // Edge Features (green) √ feature pub
/laser_cloud_sharp // Edge Sharp (blue) feature pub
/laser_cloud_surf_last feature pub
/laser_cloud_surround // Map Cloud √地图 mapOp pub
/laser_odom_to_init feature pub
/outlier_cloud // outlier cloud image pub
/outlier_cloud_last feature pub
/recent_cloud // Surround Cloud
/registered_cloud // Map Cloud (stack)
/segmented_cloud // segmented full image pub
/segmented_cloud_info image pub
/segmented_cloud_pure // segmented pure image pub

Error

编译没什么问题 这是launch后的问题 直接上大神连接 解决问题还得baidu google
/usr/local/lib/libcurl.so.4: no version information available (required by /usr/bin/cmake
https://stackoverflow.com/questions/30017397/error-curl-usr-local-lib-libcurl-so-4-no-version-information-available-requ
while loading shared libraries: libxxx.so: cannot open shared object file
https://codeleading.com/article/32165255076/

Final

建图过程截图 可见效果还ok
毕竟之前跑过的环境 如果有落下的步骤还望纠正
可用于室外 室内也基本没问题咯

### SC-LEGO-LOAM Evo GitHub Project Documentation SC-LeGO-LOAM 是由 KAIST 开源的一个激光雷达里程计和框架,它结合了 Scan Context 和 LeGO-LOAM 的优点[^3]。SC-LeGO-LOAM 主要用于处理 LiDAR 数据并实现高效的 SLAM 功能。而 SC-LeGO-LOAM Evo 则是对该框架的一种改进版本或者特定应用扩展。 以下是关于 SC-LeGO-LOAM Evo 可能涉及的内容及其相关文档说明: #### 1. **项目背景** SC-LeGO-LOAM Evo 很可能是基于原始 SC-LeGO-LOAM 进一步优化后的版本,可能针对某些硬件设备(如 Ouster 或 Velodyne 激光雷达)进行了适配,并增强了算法性能。其核心功能仍然围绕着 LOAM 家族的核心思想展开——通过特征提取、匹配以及姿态估计完成实时定位与地[^2]。 #### 2. **安装指南** 对于 SC-LeGO-LOAM Evo 的安装过程,可以参考以下步骤: - 修改 `utility.h` 文件中的雷达参数以适应所使用的传感器型号。 - 如果需要运行实际机器人上的系统,则可以在配置文件中调整 RVIZ 显示设置,例如注释掉不必要的可视化话题[^4]。 #### 3. **代码结构分析** 类似于其他 LOAM 类型的项目,SC-LeGO-LOAM Evo 的主要模块通常包括以下几个部分: - **Feature Extraction**: 提取边缘和平面点作为关键特征[^1]。 - **Pose Estimation**: 使用 ICP (Iterative Closest Point) 方法或其他优化技术来计算当前帧的姿态变化。 - **Global Map Management**: 构全局地并通过回环检测消除累计误差。 #### 4. **依赖项** 为了成功编译和部署 SC-LeGO-LOAM Evo,需确保满足以下依赖条件: - ROS (Robot Operating System): 推荐使用 Melodic 或 Noetic 版本。 - PCL (Point Cloud Library): 处理三维点云数据的关键库。 - Eigen: 数学运算支持。 如果遇到任何依赖缺失的情况,请按照官方文档指示逐一解决。 #### 5. **测试环境搭** 议在 Ubuntu 虚拟机或真实物理机器上创独立的工作空间来进行调试。具体操作如下所示: ```bash mkdir -p ~/sc_lego_loam_ws/src && cd ~/sc_lego_loam_ws/src git clone https://github.com/YourRepoNameHere/sc-lego-loam-evo.git . cd .. catkin_make source devel/setup.bash roslaunch sc_lego_loam system_real_robot.launch ``` 上述命令假设您已经克隆了正确的仓库地址;请替换为实际项目的 URL。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值