PCL 点云配准-改进的RANSAC算法(粗配准)

目录

一、概述

1.1原理

1.2实现步骤

1.3应用场景

二、代码实现

2.1关键函数

2.1.1 计算FPFH特征

2.1.2 RANSAC配准

2.1.3 可视化点云

2.2完整代码

三、实现效果


PCL点云算法汇总及实战案例汇总的目录地址链接:

PCL点云算法与项目实战案例汇总(长期更新)


一、概述

        RANSAC(Random Sample Consensus)是一种通过迭代来估计数据集内数学模型参数的算法,用于处理包含大量离群点的场景。在点云配准中,RANSAC算法可以在未知的条件下配准两个不同视角的点云,找到最佳的匹配变换矩阵。本文结合FPFH(Fast Point Feature Histograms)特征计算和改进的RANSAC算法,实现点云的粗配准。

1.1原理

      

### 关于PCL点云中的RANSAC方法 在处理点云数据时,随机抽样一致性(RANSAC)是一种常用的鲁棒估计技术。该方法通过反复从输入的数据集中抽取子集来拟合模型,并评估其适用性以排除异常值。 对于基于PCL库的点云而言,可以利用`pcl::SampleConsensusInitialAlignment`类实现带有RANSAC机制的初始对齐操作[^4]。此过程涉及特征提取、描述符计算以及最终的姿态求解三个主要环节: #### 特征提取 为了提高匹精度并减少计算复杂度,通常先采用FAST角点检测器或其他高效算法获取局部几何特性显著的位置作为兴趣点。 ```cpp // 创建SIFT Keypoint对象用于寻找关键点 pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints (new pcl::PointCloud<pcl::PointXYZ>); pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointXYZ> sift; sift.setInputCloud(source_cloud); sift.setSearchMethod(tree); sift.compute(*keypoints); ``` #### 描述符计算 接着为每一个选定的关键点构建描述向量,这里选用PFH(Point Feature Histogram)或FPFH(Fast Point Feature Histogram),它们能很好地表征三维空间内的形状信息。 ```cpp // 使用FPFH估算法线方向 pcl::NormalEstimationOMP<PointType, NormalType> ne; ne.setInputCloud(keypoints); ne.setRadiusSearch(radius); ne.compute(normals); // 计算FPFH特征直方图 pcl::FPFHEstimationOMP<PointType, NormalType, FPFHTYPE> fpfh; fpfh.setInputCloud(keypoints); fpfh.setInputNormals(normals); fpfh.setSearchMethod(fpfh_tree); fpfh.setKSearch(k); fpfh.compute(fpfhs); ``` #### 姿态求解 最后一步则是运用样本一致性的原则,在源目标间建立对应关系后尝试找到最优刚体变换矩阵T,从而完成初步的空间位置调整工作。 ```cpp // 初始化ICP参数设置 pcl::IterativeClosestPoint<PointType, PointType> icp; icp.setMaximumIterations(max_iterations); icp.setMaxCorrespondenceDistance(corresp_dist_threshold); icp.setTransformationEpsilon(transformation_epsilon); icp.setEuclideanFitnessEpsilon(euclidean_fitness_epsilon); // 执行RANSAC-based ICP注册 pcl::registration::DefaultConvergenceCriteria<FeatureScalar>::Ptr criteria(new pcl::registration::DefaultConvergenceCriteria<FeatureScalar>()); criteria->setRotationThreshold(rotation_thres); criteria->setTranslationThreshold(translation_thres); criteria->setEuclideanFitnessEpsilon(euclidean_fit_thres); icp.setConvergeCriteria(criteria); // 设置输入数据与模板数据 icp.setInputSource(source_keypts); icp.setInputTarget(target_keypts); // 开始执行 Eigen::Matrix4f transformation_matrix = Eigen::Matrix4f::Identity(); icp.align(final_result, initial_guess); transformation_matrix = icp.getFinalTransformation(); ``` 上述代码片段展示了如何借助PCL工具包实施一次完整的基于RANSAC策略下的点云任务。值得注意的是实际应用场景下还需考虑更多因素如噪声过滤、多尺度分析等优化措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MelaCandy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值