「AI」人工智能 之 四大核心感知规划行动观察

在这里插入图片描述

✨博客主页
何曾参静谧的博客(✅关注、👍点赞、⭐收藏、🎠转发)
📚全部专栏(专栏会有变化,以最新发布为准)
「Win」Windows程序设计「IDE」集成开发环境「定制」定制开发集合
「C/C++」C/C++程序设计「DSA」数据结构与算法「UG/NX」NX二次开发
「QT」QT5程序设计「File」数据文件格式「UG/NX」BlockUI集合
「Py」Python程序设计「Math」探秘数学世界「PK」Parasolid函数说明
「Web」前后端全栈开发「En」英语从零到一👍占位符
「AI」人工智能大模型

人工智能(AI)中的 感知、规划、行动、观察 是智能系统实现自主决策和与环境交互的核心循环。这一过程通常被称为 感知-规划-行动循环(Perception-Planning-Action Cycle),是许多 AI 系统(如机器人、自动驾驶汽车、智能助手等)的基础框架。下面详细介绍每个环节:


1. 感知(Perception)

感知是智能系统从环境中获取信息的过程,类似于人类的感官系统(如视觉、听觉、触觉等)。感知的目标是将原始数据转化为有意义的信息,供后续决策使用。

主要内容:

  • 数据获取
    • 通过传感器(如摄像头、雷达、激光雷达、麦克风、温度传感器等)收集环境数据。
    • 数据可以是图像、声音、文本、温度、距离等。
  • 数据处理
    • 使用计算机视觉、语音识别、自然语言处理等技术对原始数据进行处理。
    • 例如:从图像中识别物体,从语音中提取文字,从文本中提取语义。
  • 环境建模
    • 将处理后的数据转化为环境模型(如地图、物体位置、语义信息等)。
    • 例如:自动驾驶汽车通过感知构建周围环境的 3D 地图。

关键技术:

  • 计算机视觉(图像识别、目标检测、语义分割)。
  • 语音识别与自然语言处理。
  • 传感器融合(将多传感器数据整合为统一的环境模型)。

2. 规划(Planning)

规划是智能系统根据感知到的环境信息和目标任务,制定行动策略的过程。规划的目标是找到从当前状态到目标状态的最优路径或行动序列。

主要内容:

  • 任务分解
    • 将复杂任务分解为多个子任务或步骤。
    • 例如:机器人从 A 点到 B 点,需要规划路径并避开障碍物。
  • 路径规划
    • 在环境模型中找到一条可行的路径。
    • 例如:使用 A* 算法、Dijkstra 算法或 RRT(快速随机树)算法。
  • 动作序列生成
    • 根据任务需求生成具体的动作序列。
    • 例如:机器人抓取物体时,需要规划手臂的运动轨迹。

关键技术:

  • 搜索算法(A*、Dijkstra、RRT)。
  • 强化学习(用于动态环境中的策略优化)。
  • 任务规划与调度(如 HTN 分层任务网络)。

3. 行动(Action)

行动是智能系统执行规划结果的过程,将规划好的策略转化为实际的操作。行动的目标是改变环境状态或完成任务。

主要内容:

  • 动作执行
    • 通过执行器(如电机、机械臂、扬声器等)执行具体动作。
    • 例如:机器人移动、抓取物体、发出语音指令。
  • 反馈控制
    • 在行动过程中实时调整动作,确保任务顺利完成。
    • 例如:自动驾驶汽车根据实时路况调整方向盘和油门。

关键技术:

  • 控制理论(PID 控制、模型预测控制)。
  • 机器人运动学与动力学。
  • 执行器设计与优化。

4. 观察(Observation)

观察是智能系统在行动后对环境变化进行监测和评估的过程。观察的目标是验证行动效果,并为下一轮感知-规划-行动循环提供反馈。

主要内容:

  • 环境监测
    • 通过传感器观察环境的变化。
    • 例如:机器人移动后,检测自身位置是否到达目标点。
  • 效果评估
    • 评估行动是否达到预期目标。
    • 例如:自动驾驶汽车是否成功避开障碍物。
  • 反馈与学习
    • 将观察结果反馈给系统,用于优化未来的感知、规划和行动。
    • 例如:通过强化学习改进路径规划策略。

关键技术:

  • 状态估计(如卡尔曼滤波、粒子滤波)。
  • 强化学习与在线学习。
  • 异常检测与容错机制。

感知-规划-行动-观察循环的意义

这一循环是智能系统实现自主决策和与环境交互的核心机制。它的意义在于:

  1. 闭环控制:通过不断观察和反馈,系统能够动态调整行为,适应环境变化。
  2. 自主学习:通过观察行动效果,系统可以优化策略,提升性能。
  3. 鲁棒性:即使在不确定或动态环境中,系统也能完成任务。

实际应用示例

  1. 自动驾驶汽车

    • 感知:通过摄像头和雷达检测车辆、行人、交通标志。
    • 规划:规划行驶路径,避开障碍物。
    • 行动:控制方向盘、油门和刹车。
    • 观察:监测车辆是否按规划路径行驶,是否出现意外情况。
  2. 家庭服务机器人

    • 感知:通过摄像头识别家具和物体。
    • 规划:规划清扫路径或抓取物体的动作序列。
    • 行动:移动或操作机械臂完成任务。
    • 观察:检查任务是否完成,是否需要重新规划。
  3. 智能助手

    • 感知:通过语音识别理解用户指令。
    • 规划:生成回答或执行任务的策略。
    • 行动:通过语音或操作设备完成任务。
    • 观察:检测用户反馈,优化后续交互。

总结

感知、规划、行动、观察 是人工智能系统实现自主决策和与环境交互的核心循环。通过这一循环,智能系统能够感知环境、制定策略、执行任务并不断优化自身行为。这一框架在机器人、自动驾驶、智能助手等领域有着广泛的应用。

何曾参静谧的博客(✅关注、👍点赞、⭐收藏、🎠转发)


在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何曾参静谧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值