3.1 前言
通过前面第一节和第二节的分析,验证了三自由度机械臂的位置分析和正逆运动学,本节将给大家带来三自由度机械臂的动力学分析。
分析三自由度机械臂的动力学,即给出一组关节位置、速度、加速度曲线,分析其对应的关节驱动力矩。关节曲线如下:
本文打算采用四种方法来计算三自由度机械臂的动力学,分别为Simscape模型仿真(Sim)、牛顿-欧拉法(NE)、机器人工具箱(RT)和虚功原理(PVW),通过这四种方法横向对比,进一步验证所建立动力学模型的准确性。
3.2 牛顿-欧拉法(NE)
本文的牛顿-欧拉法(NE)是参考书籍《机器人导论》中的公式,具体推导过程书中进行了详细的介绍,这里不作赘述。这里将直接截取书中图片:
1.外推:i:0 -> 2
(1)角速度 i + 1 ω i + 1 ^{i+1}\omega_{i+1} i+1ωi+1:
利用该公式计算三根连杆的角速度:
<1> 连杆1的角速度只有z轴方向的值,结果为(NE和Sim对比作差):
<2> 连杆2的角速度为(NE和Sim对比作差):
<3> 连杆3的角速度为(NE和Sim对比作差):
(2)角加速度 i + 1 ω ˙ i + 1 ^{i+1}\dot{\omega}_{i+1} i+1ω˙i+1
利用该公式计算三根连杆的角加速度:
<1>连杆1的角加速度只有z轴方向的值,结果为(NE和Sim对比作差):
<2> 连杆2的角加速度为(NE和Sim对比作差):
<3> 连杆3的角加速度为(NE和Sim对比作差):
(3)坐标系原点加速度 i + 1 v ˙ i + 1 ^{i+1}\dot{v}_{i+1} i+1v˙i+1
利用该公式计算坐标系1、2、3的原点的加速度,其中坐标系1和坐标系2原点的加速度值为0,坐标系3的原点的加速度为(NE和Sim对比作差):
(4)连杆质心加速度 i + 1 v ˙ C i + 1 ^{i+1}\dot{v}_{C_{i+1}} i+1v˙Ci+1
利用该公式计算连杆1、2、3的质心的加速度:
<1> 由于连杆1的质心在 z 0 z_0 z0轴上,其加速度值为0。
<2> 连杆2的质心加速度为(NE和Sim对比作差):
<3> 连杆3的质心加速度为(NE和Sim对比作差):
(5)连杆的惯性力 i + 1 F i + 1 ^{i+1}F_{i+1}