### 使用DH参数为6DOF机械臂构建运动学模型
为了使用Denavit-Hartenberg (DH) 参数为具有六个自由度(6DOF) 的机械臂构建运动学模型,需遵循一系列定义良好的步骤。这些步骤涉及确定每个连杆的坐标系以及计算相应的 DH 参数表。
#### 定义坐标系
根据DH约定,每一节之间的相对位置通过四个参数描述:θi(绕前一z轴旋转)、di(沿当前z轴平移)、ai−1(沿当前x轴平移)和αi−1(绕当前x轴旋转)。对于每一个关节连接处都应设立一个新的笛卡尔坐标系[^1]。
```matlab
% MATLAB代码片段用于初始化DH参数矩阵
dh_params = [
theta_1, d_1, a_0, alpha_0;
theta_2, d_2, a_1, alpha_1;
theta_3, d_3, a_2, alpha_2;
theta_4, d_4, a_3, alpha_3;
theta_5, d_5, a_4, alpha_4;
theta_6, d_6, a_5, alpha_5];
```
#### 计算变换矩阵
一旦有了完整的 DH 参数列表,则可以通过乘积形式得到从基座到末端效应器的整体齐次转换矩阵 T。该过程涉及到迭代地应用相邻两帧间的单个转换操作 Ti,i+1=Rot(z, θi)*Trans(z, di)*Trans(x, ai)*Rot(x, αi)。
```matlab
function T = compute_transformation_matrix(dh_row)
% 解析输入行向量中的DH参数
theta = dh_row(1);
d = dh_row(2);
a = dh_row(3);
alpha = dh_row(4);
% 构造单独的变换组件
R_z = [cos(theta), -sin(theta), 0, 0; ...
sin(theta), cos(theta), 0, 0; ...
0, 0, 1, 0; ...
0, 0, 0, 1];
T_z = [1, 0, 0, 0; ...
0, 1, 0, 0; ...
0, 0, 1, d; ...
0, 0, 0, 1];
T_x = [1, 0, 0, a; ...
0, 1, 0, 0; ...
0, 0, 1, 0; ...
0, 0, 0, 1];
R_x = [1, 0, 0, 0; ...
0, cos(alpha), -sin(alpha), 0; ...
0, sin(alpha), cos(alpha), 0; ...
0, 0, 0, 1];
% 组合所有部分形成最终变换矩阵T_i_to_j
T = R_z * T_z * T_x * R_x;
end
```
#### 应用实例
当具体数值被赋予给定的六维矢量 {θ,d,a,α} 后,就可以调用 `compute_transformation_matrix` 函数来获得每一对连续链接间的位置关系,并进一步串联起来得出整个系统的位姿表示。