判别式AI与生成式AI的选择

生成式AI与判别式AI的选择

生成式模型试图学习样本数据的分布,以便生成新的数据。它从已有数据中学习样本的统计特征,并在此基础上生成新的数据。例如,生成式模型可以用于生成自然语言文本、音乐、图像等。生成式模型的优点是可以生成多样化的数据,但缺点是可能会生成无意义或不真实的数据,并且训练时间通常比较长。

相反,判别式模型则直接将输入映射到输出,试图学习输入与输出之间的关系。判别式模型可以用于分类、回归等任务。它的优点是通常比生成式模型训练速度更快,而且可以产生更准确的预测结果。缺点是缺乏生成多样化数据的能力。

总的来说,生成式模型适用于需要生成新数据的场景,例如图像和文本生成,而判别式模型更适用于需要进行分类和预测的场景,例如识别图像和语音识别。

生成式AI和判别式AI在应用领域和场景上有所不同。

生成式AI适用于需要创建新的、与训练数据相似但不完全相同的数据的场景。例如,生成式AI可以用于图像生成、自然语言生成、音乐生成等领域。此外,生成式AI也可以用于数据增强以提高判别式模型的性能。

判别式AI适用于需要对现有数据进行分类、回归、聚类等任务的场景。例如,判别式AI可以用于图像识别、自然语言处理、推荐系统、风险评估等领域。

需要注意的是,生成式AI和判别式AI并不是互斥的,在实际应用中通常需要根据具体问题的要求综合考虑使用哪种类型的模型或它们的组合。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
人工智能安全 现在有很多技术可以欺骗人工智能, 也有很多人工智能技术被用来欺 骗人。在人工智能AI)时代,安全问题不容忽视。 近几年,人工智能技术在很多领域都取得了初步的成功,无论是图像 分类、视频监控领域的目标跟踪,还是自动驾驶、人脸识别、围棋等 方面, 都取得了非常好的进展。 那么, 人工智能技术到底安全不安全? 事实上,目前的人工智能技术还存在很多问题。 人工智能并不安全 现在有很多技术可以欺骗人工智能,如在图片上加入一些对抗干扰。 所谓对抗干扰,就是针对智能判别式模型的缺陷,设计算法精心构造 与正常样本差异极小、能使模型错误识别的样本。如图 1 所示,本来 是一幅手枪的图片, 如果加入一些对抗干扰, 识别结果就会产生错误, 模型会识别为不是枪。在人的前面挂一块具有特定图案的牌子,就能 使人在视频监控系统中"隐身"(见图 2)。在自动驾驶场景下,如果 对限速标识牌加一些扰动,就可以误导自动驾驶系统识别成 "Stop"(见图 3),显然这在交通上会引起很大的安全隐患。另一方 面,人工智能的一些技术现在正在被滥用来欺骗人。例如,利用人工 智能生成虚假内容,包括换脸视频、虚假新闻、虚假人脸、虚拟社交 账户等。 图 1 被暴恐检测系统识别成正常图片 图 2 在智能监控下隐身 图 3 误导自动驾驶系统 不只在图片和视频领域,在语音识别领域也存在这样的安全隐患。例 如,在语音中任意加入非常微小的干扰,语音识别系统也可能会把这 段语音识别错。同样,在文本识别领域,只需要改变一个字母就可以 使文本内容被错误分类。 除了对抗攻击这种攻击类型外,还有一种叫后门攻击的攻击类型。后 门攻击是指向智能识别系统的训练数据安插后门, 使其对特定信号敏 感,并诱导其产生攻击者指定的错误行为。例如,我们在对机器进行 训练时,在某一类的某些样本中插入一个后门模式,如给人的图像加 上特定的眼镜作为后门, 用一些训练上的技巧让机器人学习到眼镜与 某个判断结果(如特定的一个名人)的关联。训练结束后,这个模型针 对这样一个人还是能够做出正确的识别, 但如果输入另一个人的图片, 让他戴上特定的眼镜,他就会被识别成前面那个人。训练的时候,模 型里留了一个后门,这同样也是安全隐患。 除了对抗样本、后门外,如果 AI 技术被滥用,还可能会形成一些新 的安全隐患。例如,生成假的内容,但这不全都是人工智能生成的, 也有人为生成的。此前,《深圳特区报》报道了深圳最美女孩给残疾 乞丐喂饭,感动路人,人民网、新华社各大媒体都有报道。后来,人 们深入挖掘,发现这个新闻是人为制造的。现在社交网络上有很多这 样的例子,很多所谓的新闻其实是不真实的。一方面,人工智能可以 发挥重要作用,可以检测新闻的真假;另一方面,人工智能也可以用 来生成虚假内容,用智能算法生成一个根本不存在的人脸。 用人工智能技术生成虚假视频, 尤其是使用视频换脸生成某个特定人 的视频,有可能对社会稳定甚至国家安全造成威胁。例如,模仿领导 人讲话可能就会欺骗社会大众。因此,生成技术是否需要一些鉴别手 段或者相应的管理规范,这也是亟须探讨的。例如,生成虚假人脸, 建立虚假的社交账户,让它与很多真实的人建立关联关系,甚至形成 一些自动对话,看起来好像是一个真实人的账号,实际上完全是虚拟 生成的。这样的情况该如何管理还需要我们进一步探索和研究。 人工智能安全隐患的技术剖析 针对 AI 的安全隐患,要找到防御的方法,首先要了解产生安全隐患 的技术。以对抗样本生成为例,其主要分为 2 类:一类是白盒场景下 对抗样本生成;另一类为黑盒场景下对抗样本生成。白盒场景的模型 参数完全已知,可以访问模型中所有的参数,这个情况下攻击就会变 得相对容易一些,只需要评估信息变化的方向对模型输出的影响,找 到灵敏度最高的方向,相应地做出一些扰动干扰,就可以完成对模型 的攻击。黑盒场景下攻击则相对较难,大部分实际情况下都是黑盒场 景,我们依然可以对模型远程访问,输入样本,拿到检测结果,但无 法获得模型里的参数。 现阶段的黑盒攻击可大致分为 3 类。 第一类是基于迁移性的攻击方法, 攻击者可以利用目标模型的输入信息和输出信息, 训练出一个替换模 型模拟目标模型的决策边界, 并在替换模型中利用白盒攻击方法生成 对抗样本,最后利用对抗样本的迁移性完成对目标模型的攻击。第二 类是基于梯度估计的攻击方法, 攻击者可以利用有限差分以及自然进 化策略等方式来估计梯度信息, 同时结合白盒攻击方法生成对抗样本。 在自然进化策略中, 攻击者可以以多个随机分布的单位向量作为搜索 方向,并在这些搜索方向下最大化对抗目标的期望值。第三类是基于 决策边界的攻击方法,通过启发式搜索策略搜索决策边界,再沿决策 边界不断搜索距离原样本更近的对抗样本。 有攻击就有防御,针对对抗样本的
人工智能的关键技术 2-3-人工智能关键技术全文共14页,当前为第1页。 提纲 人工智能关键技术总览 人工智能基础设施 人工智能算法 2-3-人工智能关键技术全文共14页,当前为第2页。 人工智能关键技术总览 CPU服务器 Tensorflow/Caffe/Mxnet/Torch/Keras/PyTorch/Theano… 算法层 强化学习 对抗学习 迁移学习 算法框架 基础硬件 GPU服务器 专用芯片 高速网络 基础设施 机器学习 深度学习 …… 2-3-人工智能关键技术全文共14页,当前为第3页。 基础设施(1)基础硬件 2-3-人工智能关键技术全文共14页,当前为第4页。 基础设施(2)算法框架 2-3-人工智能关键技术全文共14页,当前为第5页。 算法(1)机器学习的基本方法 例如: 房价预测 2-3-人工智能关键技术全文共14页,当前为第6页。 算法(2)机器学习的分类 2-3-人工智能关键技术全文共14页,当前为第7页。 算法(3)深度学习 2-3-人工智能关键技术全文共14页,当前为第8页。 算法(4)卷积神经网络和循环神经网络 卷积神经网络 循环神经网络 2-3-人工智能关键技术全文共14页,当前为第9页。 算法(5)迁移学习 2-3-人工智能关键技术全文共14页,当前为第10页。 算法(6)对抗学习 2-3-人工智能关键技术全文共14页,当前为第11页。 算法(7)强化学习 2-3-人工智能关键技术全文共14页,当前为第12页。 人工智能平台 开源框架 底层硬件 能力层 应用层 基础设施 深度学习平台:基础设施,提供算法、算力和数据 AI能力平台:提供语音语言、图像视频、智能数据分析等AI核心能力 标注数据 Tensorflow / Caffe / Mxnet / Keras / Kaldi / Theano / cuDNN / CNTK / Torch / ImageNet / LFW / THCHS-30 / AI Shell / … … 深度学习平台 GPU / CPU / ASIC / FPGA 智慧网络 智慧服务 智慧市场 智慧管理 AI能力平台 语音 语言 图像视频 智能数据分析 情感识别 语音识别 文本分类 人机对话 人脸识别 行为分析 通用建模 数据可视化 多租户 容器化 Kubernetes Spark+Hadoop 云服务 平台管理 智慧安全 2-3-人工智能关键技术全文共14页,当前为第13页。 总结 人工智能的发展历程 人工智能的标志性产品 人工智能应用现状和发展趋势 2-3-人工智能关键技术全文共14页,当前为第14页。 卷积神经网络主要用于图像处理特征。多层神经网络,将局部感受野、权值共享、亚采样这三种结构思想结合,提取图像/文本特征。如图所示,图像A表示为32*32的矩阵向量作为CNN的输入,经过卷积层、池化层后全连接将32*32的矩阵向量变为1维的向量表示,将其作为Softmax层的输入,输出类别,即图像中的字母。 循环神经网络的应用场景比较多,比如暂时能写论文,写程序,写诗等。如图所示,每个圆圈可以看作是一个单元,从图中可以看出循环神经网络中的单元结果是重复使用的。并且一个序列当前的输出与前面的输出也有关,因此该模型具有记忆能力。 9 迁移学习主要是对通过对源域的学习解决目标域的识别任务。把已训练好的模型参数迁移到新的模型来帮助新模型训练,可以将已经学到的模型参数通过某种方式来分享给新模型,从而加快并优化模型的学习效率。 如图中所示,传统的机器学习的方法针对特定的问题训练不同的模型,而迁移学习允许我们通过借用已经存在的一些相关的任务或域的标签数据来处理这些场景。我们尝试着把在源域中解决源任务时获得的知识存储下来,并将其应用在我们感兴趣的目标域中的目标任务上去。 10 生成式对抗网络核心是对抗式,两个网络互相竞争,一个负责生成样本,另一个负责判别样本。 如图所示,生成模型G(generator network)捕捉样本数据的分布,判别模型D(discriminator)是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率。生成模型G,输入是一些服从某一简单分布(例如高斯分布)的随机噪声,输出是与训练图像相同尺寸的生成图像。向判别模型D输入生成样本,对于 D 来说期望输出低概率(判断为生成样本),对于生成模型 G 来说要尽量欺骗 D,使判别模型输出高概率(误判为真实样本),从而形成竞争与对抗。 11 传统的机器学习方法包括监督学习、无监督学习和半监督学习。 监督学习是学习给定标签的数据集。标签为离散的类型,称为分类,标签为连续的数字,则称为回归。 无监督学习是学习没有标签的数据集。 半监督学习的数据集部分有标签部分无标签的数据集。由于有标签的数据很多时候需要花大量人力
判别式模型和生成式模型是机器学习中两种常见的模型类型。生成式模型是通过学习数据的分布来建立模型P(y|x),然后利用该模型来生成新的数据。典型的生成式模型有朴素贝叶斯模型,它通过学习数据的分布来建立概率模型,然后利用该模型来生成新的数据。判别式模型是通过学习输入和输出之间的映射关系来建立模型y=f(x),然后利用该模型来预测新的输出。典型的判别式模型有支持向量机模型,它通过学习输入和输出之间的映射关系来建立分类模型,然后利用该模型来预测新的分类结果。生成式模型和判别式模型都有各自的优缺点,选择哪种模型取决于具体的应用场景和数据特征。常见的生成式模型包括决策树、朴素贝叶斯、隐马尔可夫模型、条件随机场、概率潜在语义分析、潜在狄利克雷分配、高斯混合模型。常见的判别式模型包括感知机、支持向量机、K临近、Adaboost、K均值、潜在语义分析、神经网络。逻辑回归既可以看做是生成式模型,也可以看做是判别式模型。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* [生成式模型与判别式模型](https://blog.csdn.net/weixin_46359306/article/details/130422585)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [判别式模型与生成式模型](https://blog.csdn.net/Ai_ViVi/article/details/41204309)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有品位的小丑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值