Unity中Shader矩阵变换的几何体现


前言

我们在这篇文章中,了解一下矩阵的几何意义。


一、点 的 向量表达形式 和 矩阵表达形式

我们在图形计算器中,形象的看一下,这两种表达方式之间的关系

请添加图片描述

1、点 的 向量表达形式

  • 点坐标 可以看作一个 从坐标原点 指向 点P的向量
  • 可以把该向量分解为:两个坐标轴方向上的向量之和
  • 坐标轴方向上的向量可以由:该坐标轴方向上的单位向量 乘以 P点对应的xy坐标值得到

这样就可以得到:P = i ⃗ \vec i i * Px + j ⃗ \vec j j * Py

2、点 的 矩阵表达形式

  • P = i ⃗ \vec i i * Px + j ⃗ \vec j j * Py = (1,0) * Px + (0,1) *Py
    可以逆推理出:
  • P = i ⃗ \vec i i * Px + j ⃗ \vec j j * Py = (1,0) * Px + (0,1) *Py

[ 1 0 0 1 ] ∗ [ P x P y ] = [ P x P y ] = ( P x , P y ) \begin{bmatrix} 1&0\\ 0&1\\ \end{bmatrix} * \begin{bmatrix} P_x\\ P_y\\ \end{bmatrix}= \begin{bmatrix} P_x&P_y\\ \end{bmatrix} = (P_x ,P_y) [1001][PxPy]=[PxPy]=(Px,Py)


二、使用二维旋转矩阵来旋转P点

M r o t a t e = [ c o s ( θ ) s i n ( θ ) − s i n ( θ ) c o s ( θ ) ] M_{rotate}= \begin{bmatrix} cos(θ)&sin(θ)\\ -sin(θ)&cos(θ) \end{bmatrix} Mrotate=[cos(θ)sin(θ)sin(θ)cos(θ)]

请添加图片描述

  • P3 = Mrotation * P1
  • P4 = Mrotation * P2
  • c°是顺时针旋转的角度

三、怎么求坐标系旋转后 P 点在新坐标系中的坐标

  • [PB] = [AB] * [PA]
    顶点P在B坐标系下的坐标 = A坐标系的基向量在B坐标系下的坐标所构成的矩阵 * 顶点P在A坐标系下的坐标
  • [PA] = [BA] * [PB]

顶点P在A坐标系下的坐标 = B坐标系的基向量在A坐标系下的坐标所构成的矩阵 * 顶点P在B坐标系下的坐标

  • 因此,我们可以得出: AB = BA-1

那么,我们要求 P 点在旋转后坐标系B下的坐标,可以这样求:

  • 坐标系的基向量是互相垂直的单位向量,构成的矩阵刚好为正交矩阵
  • 正交矩阵性质:逆矩阵 = 转置矩阵
  • [PB] = [BA]-1*[PA]

1、我们求出 B 坐标系的基向量在 A 坐标系下的矩阵

B坐标系相对于A坐标系顺时针旋转了90°

  • 基向量矩阵的构成方法:i 为一列,j为一列

2、求 B 坐标系的基向量在 A 坐标系下的矩阵的逆矩阵(转置矩阵)

3、[PB] = [BA]-1*[PA]

  • P1在B坐标系下看为(-1,2)
  • PB就是我们所求的结果

在这里插入图片描述

  • 28
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楠溪泽岸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值