Asset Pricing:Asset Pricing Formula

Asset Pricing:Asset Pricing Formula

State Price Model:
p j = ∑ s = 1 S q s x s j p_j=\sum_{s=1}^Sq_sx_s^j pj=s=1Sqsxsj
Stochastic Discount Factor:

suppose { π s } s = 1 S \{\pi_s\}_{s=1}^S {πs}s=1S​​ is the physical probability distribution of states:
p j = ∑ s = 1 S q s x s j = ∑ s = 1 S π s q s π s x s j = ∑ s = 1 S π s m s x s j = E [ m x j ] m s ≡ q s π s → S t o c h a s t i c   D i s c o u n t   F a c t o r p_j=\sum_{s=1}^Sq_sx_s^j=\sum_{s=1}^S\pi_s\dfrac{q_s}{\pi_s}x_s^j=\sum_{s=1}^S\pi_sm_sx_s^j=\mathbb E[mx^j]\\m_s\equiv\dfrac{q_s}{\pi_s}\to Stochastic\ Discount\ Factor pj=s=1Sqsxsj=s=1Sπsπsqsxsj=s=1Sπsmsxsj=E[mxj]msπsqsStochastic Discount Factor
Note that:
p j = E [ m ⋅ x j ] = E [ x j ] E [ m ] + C o v ( m , x j ) r i s k − f r e e   b o n d : p b = E [ m ] = 1 R f → R f = 1 E [ m ] , m = u ′ ( c 1 ) u ′ ( c 0 ) p j = E [ x j ] R f + C o v ( m , x j ) p_j=\mathbb E[m·x_j]=\mathbb E[x_j]\mathbb E[m]+Cov(m,x_j)\\risk-free\ bond:p_b=\mathbb E[m]=\dfrac{1}{R^f}\to R^f=\dfrac{1}{\mathbb E[m]},m=\dfrac{u'(c_1)}{u'(c_0)}\\p_j=\dfrac{\mathbb E[x^j]}{R^f}+Cov(m,x^j) pj=E[mxj]=E[xj]E[m]+Cov(m,xj)riskfree bond:pb=E[m]=Rf1Rf=E[m]1,m=u(c0)u(c1)pj=RfE[xj]+Cov(m,xj)
Typically, C o v ( m , x j ) < 0 Cov(m,x^j)<0 Cov(m,xj)<0.

Defining R j ≡ x j p j → E [ m R j ] = 1 R^j\equiv\dfrac{x^j}{p_j}\to \mathbb E[mR^j]=1 RjpjxjE[mRj]=1

我们有 E [ m R f ] = 1 \mathbb E[mR^f]=1 E[mRf]=1,所以:
E [ m ⋅ ( R j − R f ) ] = 0 E [ m ] ( E [ R j ] − R f ) + C o v ( m , R j ) = 0 E [ R j ] − R f = − C o v ( m , R j ) E [ m ] \mathbb E[m·(R^j-R^f)]=0\\\mathbb E[m](\mathbb E[R^j]-R^f)+Cov(m,R^j)=0\\\mathbb E[R^j]-R^f=-\frac{Cov(m,R^j)}{\mathbb E[m]} E[m(RjRf)]=0E[m](E[Rj]Rf)+Cov(m,Rj)=0E[Rj]Rf=E[m]Cov(m,Rj)
Which implies that the Expected Excess return for a generic asset j j j​​ is determined solely by the covariance with the stochastic discount factor. − 1 E [ m ] → -\dfrac{1}{\mathbb E[m]}\to E[m]1​​ price of market risk , C o v ( m , R j ) → Cov(m,R^j)\to Cov(m,Rj)​​ Quantity of risk for Asset j j j

Equivalent Martingale Measure:

start with:
p j = ∑ s = 1 S q s x s j p_j=\sum_{s=1}^Sq_sx_s^j pj=s=1Sqsxsj
for a riskfree bond we have:
p b = ∑ s = 1 S q s = 1 1 + r f p_b=\sum_{s=1}^Sq_s=\frac{1}{1+r^f} pb=s=1Sqs=1+rf1
where r f r^f rf is the risk-free net return. We have:
p j = ∑ s = 1 S q s ∑ s = 1 S q s x s j ∑ s = 1 S q s = 1 1 + r f ∑ s = 1 S q s ∑ s = 1 S q s x s j = 1 1 + r f ∑ s = 1 S π ^ s x s j = 1 1 + r f E Q [ x j ] w h e r e   π ^ s ≡ q s ∑ s = 1 S q s p_j=\sum_{s=1}^Sq_s\sum_{s=1}^S\frac{q_sx_s^j}{\sum_{s=1}^Sq_s}=\frac{1}{1+r^f}\sum_{s=1}^S\frac{q_s}{\sum_{s=1}^Sq_s}x_s^j=\frac{1}{1+r^f}\sum_{s=1}^S\hat\pi_sx_s^j=\frac{1}{1+r^f}\mathbb E^Q[x^j]\\where\ \hat\pi_s\equiv\frac{q_s}{\sum_{s=1}^Sq_s} pj=s=1Sqss=1Ss=1Sqsqsxsj=1+rf1s=1Ss=1Sqsqsxsj=1+rf1s=1Sπ^sxsj=1+rf1EQ[xj]where π^ss=1Sqsqs
State-Price Beta Model:

stochastic discount factor:
m ∗ ≡ [ q 1 ∗ π ⋮ q S ∗ π ] m^*\equiv\left[\begin{matrix}\frac{q_1^*}{\pi}\\\vdots\\\frac{q_S^*}{\pi}\end{matrix}\right] mπq1πqS
define its return as R ∗ = m ∗ p m ∗ ≡ α m ∗ , α > 0 R^*=\dfrac{m^*}{p_{m^*}}\equiv\alpha m^*,\alpha>0 R=pmmαm,α>0​, we can write:
E [ R j ] − R f = − C o v ( R ∗ , R j ) E [ R ∗ ] \mathbb E[R^j]-R^f=-\frac{Cov(R^*,R^j)}{\mathbb E[R^*]} E[Rj]Rf=E[R]Cov(R,Rj)
define β j ≡ C o v ( R ∗ , R j ) V a r ( R ∗ ) \beta_j\equiv\dfrac{Cov(R^*,R^j)}{Var(R^*)} βjVar(R)Cov(R,Rj), we have:
E [ R j ] − R f = − β j V a r ( R ∗ ) E [ R ∗ ] \mathbb E[R^j]-R^f=-\beta_j\frac{Var(R^*)}{\mathbb E[R^*]} E[Rj]Rf=βjE[R]Var(R)
and for security x ∗ x^* x, we have β ∗ = C o v ( R ∗ , R ∗ ) V a r ( R ∗ ) = 1 \beta^*=\dfrac{Cov(R^*,R^*)}{Var(R^*)}=1 β=Var(R)Cov(R,R)=1:
E [ R ∗ ] − R f = − V a r ( R ∗ ) E [ R ∗ ] \mathbb E[R^*]-R^f=-\frac{Var(R^*)}{\mathbb E[R^*]} E[R]Rf=E[R]Var(R)
so we have:
E [ R j ] − R f = β j ( E [ R ∗ ] − R f ) \mathbb E[R^j]-R^f=\beta_j(\mathbb E[R^*]-R^f) E[Rj]Rf=βj(E[R]Rf)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值