1. 避障成功率 (Obstacle Avoidance Success Rate)
- 该指标衡量算法成功避开障碍物的能力。成功率越高,说明算法在复杂环境中能够有效避免碰撞。
- 公式表示:
成功率=成功避障的次数总避障尝试次数成功率 / 总避障尝试次数成功避障的次数
2. 路径规划质量 (Path Quality)
- 主要考察算法规划出的路径的平滑性、最短性、以及是否避开了所有的障碍物。
- 包括以下几个方面:
- 路径长度:规划路径的总距离,尽可能短的路径通常是较优的。
- 路径平滑性:路径是否平滑,避免尖角和不必要的急转弯。
- 计算复杂度:路径规划所需的计算时间和资源。
3. 实时性 (Real-time Performance)
- 该指标衡量算法的执行速度和实时性。机器人在动态环境中需要快速响应并实时调整路径,实时性较好的算法能够在较短的时间内完成避障计算。
- 响应时间:从感知到障碍物到决策完毕所需的时间。
- 更新频率:算法对环境变化的更新频率,通常希望能够实时处理环境变化。
4. 计算资源消耗 (Computational Resource Consumption)
- 衡量算法所需要的计算资源,包括CPU、内存等消耗。较高效的算法能够在硬件资源受限的情况下运行。
- 内存消耗:算法运行时所占用的内存大小。
- CPU占用率:算法运行时CPU的使用率。
5. 稳定性与鲁棒性 (Stability and Robustness)
- 稳定性:避障算法在环境变化或不可预测情况下是否仍能有效工作。例如,当障碍物的速度或方向发生变化时,算法是否能及时调整路径。
- 鲁棒性:算法是否能够在不同类型的环境和障碍物下工作,无论是静态障碍物还是动态障碍物。
6. 避障时的安全性 (Safety during Obstacle Avoidance)
- 在进行避障操作时,算法是否保证机器人的安全,避免机器人与障碍物发生碰撞,甚至避免影响机器人与环境中其他对象的交互。
- 最小安全距离:算法是否能够保持与障碍物的足够距离,避免碰撞。
7. 可扩展性 (Scalability)
- 该指标评价算法是否能够在更复杂、更大规模的环境中表现良好。对于大型环境或多个障碍物的情形,算法是否能够有效工作。
8. 协同能力 (Cooperative Ability)
- 对于多机器人系统或人与机器人共同工作场景,算法的协同能力非常重要。能够有效地避免与其他机器人或人类的碰撞,并保持协同作业。
9. 能效 (Energy Efficiency)
- 该指标用于衡量避障算法在执行过程中所消耗的能源。在某些应用场景中(如移动机器人),节能至关重要,特别是在电池供电的情况下。
10. 灵活性与适应性 (Flexibility and Adaptability)
- 评价算法在面对不同类型的障碍物、环境变化(如光照变化、天气变化等)时的适应能力。例如,在非结构化环境中是否能够良好避障。
11. 可解释性 (Interpretability)
- 避障算法的可解释性评估算法决策过程的透明度。可以让开发人员或用户理解算法是如何做出决策的,尤其是在出现问题时,能够追踪和修正。