Poly Kernel Inception Network for Remote Sensing Detection

该文章介绍了一种新型的深度学习模型PKINet,专为解决遥感图像中目标检测面临的尺度变化和复杂环境问题。PKINet利用多核初始网络提取多尺度特征,并结合上下文锚定注意模块(CAA)捕捉远程上下文。CAA模块采用轻量级的一维深度卷积,有效地增强对细长物体的特征识别和远程像素关系的建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Poly Kernel Inception Network for Remote Sensing Detection


在这里插入图片描述
文章地址: https://arxiv.org/pdf/2403.06258.pdf

code地址:GitHub - NUST-Machine-Intelligence-Laboratory/PKINet

1、要干什么及解决什么问题

遥感图像中的目标检测经常面临一些日益严峻的挑战,包括目标尺度的巨大变化和不同的测距环境
任意方向和大量尺度变化的目标

2、怎么解决的

以前的方法:通过扩大主干的空间接受野来解决这些挑战,要么通过大核卷积,要么通过扩张卷积。然而,前者通常会引入相当大的背景噪声,而后者则有可能产生过于稀疏的特征表示。

引入多核初始网络(PKINet)来处理上述挑战。PKINet采用不扩展的多尺度卷积核提取不同尺度的目标特征,并捕获局部上下文。此外,并行引入了上下文锚定注意(Context AnchorAttention, CAA)模块,用于捕获远程上下文信息。
在这里插入图片描述
PKI模块:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值