(BEV论文精读) ICRA‘23:BEVFusion

Introduction

由于激光雷达可以提供精确的空间信息,而雷达可以提供速度信息,一般来说将雷达信息投影到图片中会引起几何信息损失,影响3d检测任务。同时相机到LiDAR的投影在语义上是有损失的。对于典型的32光束LiDAR扫描仪,只有5%的相机特征将与LiDAR点匹配,而所有其他特征将被丢弃。对于稀疏的LiDAR(或成像雷达),这种密度差异将变得更加剧烈。基于这些问题,本文提出了一种基于BEVFusion的未知任务的学习方法。该方法将多模态特征统一到共享的鸟瞰图(BEV)表示空间中。

关于多传感器融合主要有两类方法:proposal-level和point-level融合方法

详情作者将会在后续文章介绍。

Method

给定两个传感器的输入,使用modality-specific encoders提取特征,将其转换为统一的BEV特征空间,其中富含纹理细节信息和语义信息。通过预计算和间隔减少来加速BEV池化操作,然后应用BEV Encoder来整合BEV特征且降低不同特征之间的误差,最后增加了不同的head用于不同任务。

3.1 Unified Representation

由于相机具有不同的视角,因此相同的特征张量可能会代表不同的空间位置,因此需要找到一个共同的表达方式,它满足所有的张量可以轻松到这一特征空间中,并且使用于不同的任务中。

(1)受RGB-D数据的启发,一种选择是将LiDAR点云投影到相机平面并渲染2.5D稀疏深度。但深度图中两个相邻位置的物体可能在真实空间中具有较远的距离。

(2)使用camera-to-LiDAR会导致语义损失。。。还在挖坑,没有给出真正的解决方案,吊人胃口奥

(3)说明了以上方法的缺点,给出本文能使用的方法:将其转换到BEV空间进行融合。

首先适用于各种任务,将相机和雷达向BEV中转换没有任何信息损失。

3.2 Efficient Camera-to-BEV Transformation

(1)首先预测每个像素的离散深度分布概率

(2)然后,将每个特征像素沿摄像机射线沿着分散成D个离散点,并通过其相应的深度概率重新缩放相关特征

(3)这将生成大小为NHWD的摄像机特征点云,其中N是摄像机的数量,(H,W)是摄像机特征地图大小。

(4)这样的3D特征点云沿着x、y轴以步长r(例如,0.4米)的高度。我们使用BEV池操作来聚合每个r × r BEV网格内的所有特征,并沿着z轴展平特征。

由于池化操作需要极大的计算量,文章提出了一种新的池化方式:

Precomputation.
(1)将相机特征点云中的每个点与Bev相关联

(2)相机内外参是是固定的,因此相机特征点云的坐标是固定的,所以将3D坐标和BEV中的点联系起来。

(3)将BEV中的点排序并进行记录,在推理时,只需要在预先计算的排列中去记录所有特征点。

Interval Reduction

(1)在上述步骤中我们的到了一个连续张量,他的位置索引代表了BEV空间中的对应位置。

(2)利用简单的计算对特征进行融合,为了加速这一过程,使用GPU并行计算并得到结果实现了加速,并且由于独立计算消除了各个线程之间的依赖性

3.3 Fully-Convolutional Fusion

将所有感官特征转换为共享BEV表示后,我们可以轻松地使用元素级运算符(例如连接)将它们融合在一起。虽然在相同的空间中,但由于视图转换中的不准确深度导致LiDAR BEV特征和相机BEV特征在一定程度上仍然可能在空间上未对准。为此,我们应用convolution-based BEV encoder来补偿这种局部未对准

3.4 Multi-Task Heads

我们将多个特定于任务的头部应用于融合的BEV特征图。我们的方法适用于大多数3D感知任务。我们展示了两个例子:3D对象检测和BEV地图分割。

Training.:无须冻结相机的encoder,直接训练整个模型

  • 21
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值