✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
滚动轴承是现代机械设备中不可或缺的重要部件,其健康状况直接影响设备的运行效率和安全性。故障诊断是确保设备可靠运行的关键技术之一。近年来,变分模态分解 (VMD) 作为一种新兴的信号处理方法,在滚动轴承故障诊断领域展现出巨大潜力。本文将基于 VMD 对滚动轴承的经典故障进行诊断,并结合时域和频域分析,深入探讨 VMD 在故障识别和特征提取方面的优势。
1. 引言
滚动轴承故障主要包括:外圈故障、内圈故障、滚动体故障和保持架故障。这些故障会导致轴承振动信号发生变化,进而影响设备的正常运行。传统的故障诊断方法主要依靠人工经验和频谱分析,存在主观性强、效率低等缺陷。
VMD 是一种基于希尔伯特变换的信号分解方法,能够自适应地将信号分解为多个模态分量,并保留其固有的时频特性。相比于传统的信号分解方法,VMD 具有以下优势:
-
自适应性:VMD 不需要预先设定分解参数,能够根据信号本身的特性进行分解。
-
多尺度性:VMD 能够提取不同尺度的信号特征,更适合于非平稳信号的分析。
-
完备性:VMD 保证了分解后的模态分量之和等于原始信号,避免了信息丢失。
2. 基于 VMD 的滚动轴承故障诊断方法
本研究采用 VMD 对滚动轴承的振动信号进行分解,并提取时域和频域特征进行故障诊断。具体步骤如下:
-
数据采集:采集不同工况下滚动轴承的振动信号。
-
VMD 分解:利用 VMD 对振动信号进行分解,得到多个模态分量。
-
特征提取:对每个模态分量进行时域和频域分析,提取故障特征。
-
故障识别:根据提取的特征进行故障识别,并判断故障类型和严重程度。
3. 时域、频域分析
时域分析主要包括:均值、方差、峰值、峭度等统计特征,以及时域波形的观察。频域分析主要包括:频谱分析、包络分析、小波分析等方法。
对于滚动轴承故障,时域和频域分析都具有重要意义。时域分析可以反映故障信号的整体变化趋势,而频域分析可以揭示故障信号的频率特性。
4. 实验结果与分析
本研究对不同工况下滚动轴承的振动信号进行 VMD 分解,并提取时域和频域特征。实验结果表明:
-
VMD 能够有效地将滚动轴承的振动信号分解为多个模态分量,并保留其固有的时频特性。
-
时域和频域分析能够有效地提取故障特征,并进行故障识别。
-
VMD 结合时域和频域分析能够提高滚动轴承故障诊断的准确率和效率。
5. 结论
本文基于 VMD 对滚动轴承的经典故障进行了诊断,并结合时域和频域分析,深入探讨了 VMD 在故障识别和特征提取方面的优势。实验结果表明,VMD 是一种有效的滚动轴承故障诊断方法,能够提高故障诊断的准确率和效率。
⛳️ 运行结果
🔗 参考文献
[1]张俊甲.基于变分模态分解的滚动轴承故障诊断[D].石家庄铁道大学[2024-05-12].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类