✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真。
🍎更多Matlab代码及仿真定制内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
图像隐藏技术作为信息安全领域的重要分支,近年来得到了广泛关注。其核心目标在于将秘密信息巧妙地嵌入载体图像中,实现隐蔽通信的目的。本文将重点探讨基于最低有效位(Least Significant Bit, LSB)算法的可逆信息隐藏技术,并提供相应的Matlab代码实现,深入分析其原理、优势与局限性。
LSB算法是一种经典的图像信息隐藏方法,其原理简单易懂,操作便捷。它利用图像像素的最低有效位来存储秘密信息。由于人眼对像素最低位的微小变化不敏感,因此嵌入信息后,载体图像的视觉质量基本保持不变。然而,传统的LSB算法通常是不可逆的,即提取秘密信息后无法完全恢复原始载体图像。本文将着重讨论一种改进的LSB算法,实现可逆信息隐藏。
一、可逆LSB算法原理
为了实现信息的可逆隐藏,我们需要在嵌入秘密信息的同时,记录嵌入信息的位置和信息本身。这样,在提取秘密信息之后,我们可以根据这些记录信息,精确地恢复原始图像。一种常用的方法是利用图像的冗余信息来存储这些辅助信息。
具体算法步骤如下:
-
预处理: 对载体图像进行预处理,例如,将图像转换为灰度图像。这有助于简化算法和提高效率。
-
信息嵌入: 将秘密信息转换为二进制流。然后,按照预先确定的顺序,将二进制流的每一个比特嵌入到载体图像像素的最低有效位中。为了实现可逆性,我们需要记录哪些像素的LSB被修改了,以及修改后的值。这可以通过创建一个掩码图像来实现。掩码图像的像素值表示对应载体图像像素的LSB是否被修改,以及修改前的LSB值。例如,若掩码图像的像素值为0,则表示对应载体图像像素的LSB未被修改;若掩码图像像素值为1,则表示对应载体图像像素的LSB被修改,且修改前的LSB值为1。
-
载体图像更新: 根据嵌入信息和掩码图像更新载体图像的像素值。
-
信息提取: 根据掩码图像,将嵌入在载体图像中的秘密信息提取出来。
-
图像恢复: 根据掩码图像,恢复原始载体图像。
二、Matlab代码实现
以下Matlab代码实现了上述可逆LSB算法:
% 恢复原始图像
recoveredImage = coverImage;
embeddingIndex = 1;
for i = 1:rows
for j = 1:cols
if embeddingIndex <= dataLength
if maskImage(i,j) == 1
recoveredImage(i,j) = stegoImage(i,j) + (-1)^maskImage(i,j);
end
embeddingIndex = embeddingIndex + 1;
end
end
end
% 将二进制转换为字符串
extractedMessage = char(bin2dec(reshape(num2str(extractedBinary),8,[]).'));
% 显示结果
figure;
subplot(2,2,1); imshow(coverImage); title('原始图像');
subplot(2,2,2); imshow(stegoImage); title('嵌入信息后的图像');
subplot(2,2,3); imshow(recoveredImage); title('恢复后的图像');
subplot(2,2,4); textwrap(gca,extractedMessage,'interpreter','none'); title('提取的信息');
三、算法的优势与局限性
该算法的主要优势在于其可逆性,能够完美恢复原始载体图像,避免了信息隐藏过程中数据丢失的问题。 同时,LSB算法实现简单,计算效率高。
然而,该算法也存在一些局限性:
-
嵌入容量有限: 由于仅利用像素的最低有效位,嵌入信息量有限,且对载体图像大小要求较高。
-
对噪声敏感: LSB算法对噪声比较敏感,轻微的噪声干扰都可能导致信息提取错误。
-
安全性较低: LSB算法的嵌入规则比较简单,容易被攻击者检测和破坏。
四、总结与展望
本文介绍了一种基于LSB算法的可逆信息隐藏方法,并提供了相应的Matlab代码实现。该方法具有可逆性、简单易懂等优点,但在嵌入容量和安全性方面仍有待改进。未来的研究可以关注以下几个方面: 改进嵌入策略,提高嵌入容量; 结合其他图像处理技术,增强算法的鲁棒性和安全性; 研究更复杂的不可感知信息嵌入技术,提高隐蔽性。 此外,探索基于深度学习的图像信息隐藏方法也具有重要的研究意义。 通过不断改进和完善,图像隐藏技术将在信息安全领域发挥越来越重要的作用。
⛳️ 运行结果
🔗 参考文献
[1]邹娟,贾世杰.基于LSB图像隐藏系统的设计与实现[J].计算机技术与发展, 2007, 17(5):3.DOI:10.3969/j.issn.1673-629X.2007.05.035.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类