✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
数据聚类作为一种无监督学习方法,在模式识别、图像处理、机器学习等领域有着广泛的应用。模糊C均值聚类 (Fuzzy C-Means, FCM) 算法作为一种经典的模糊聚类算法,因其能够处理数据的不确定性和模糊性而备受关注。然而,FCM算法的计算复杂度较高,尤其在处理大规模数据集时,其计算时间和内存消耗成为制约其应用的关键因素。因此,探索高效的FCM算法改进策略具有重要的理论和实践意义。本文将深入探讨一种基于快速傅里叶变换 (Fast Fourier Transform, FFT) 的快速模糊C均值聚类算法 (Fast Fuzzy C-Means with Wavelet, FFCMW),并提供其Matlab代码实现,以期提升FCM算法的计算效率。
FCM算法的核心在于迭代地更新隶属度矩阵和聚类中心,直到满足预设的收敛条件。其计算复杂度主要体现在两个方面:一是计算样本点与各个聚类中心的距离,二是更新隶属度矩阵。传统的FCM算法采用直接计算距离的方法,计算量随着样本数和聚类数的增加而呈指数增长。为了克服这一瓶颈,本文提出利用快速傅里叶变换来加速FCM算法的计算过程。
FFT算法是一种高效的离散傅里叶变换算法,能够将时域信号快速变换到频域,从而降低计算复杂度。在FFCMW算法中,我们首先将数据样本映射到频域。由于在频域中,数据的相似性可以用频谱的相似性来衡量,因此我们可以利用频谱相似性来替代传统的欧氏距离计算,从而显著减少计算量。具体步骤如下:
-
数据预处理: 对原始数据进行标准化处理,消除量纲差异的影响,确保数据具有零均值和单位方差。
-
快速傅里叶变换: 对预处理后的数据进行FFT变换,将数据从时域转换到频域。
-
频域相似性计算: 利用频域数据计算样本点与聚类中心的相似性。此处可以使用多种相似性度量方法,例如相关系数或余弦相似度,其计算复杂度远低于欧氏距离计算。
-
隶属度更新: 根据计算得到的频域相似性,更新样本点的隶属度,并更新聚类中心。此步骤与传统的FCM算法基本一致,但由于使用了频域相似性,计算量显著降低。
-
迭代收敛: 重复步骤3和4,直到满足预设的收敛条件,例如隶属度矩阵的变化小于预设阈值或达到最大迭代次数。
FFCMW算法的优势在于它有效地降低了FCM算法的计算复杂度。传统的FCM算法的计算复杂度为O(NCM),其中N为样本数,C为聚类数,M为数据的维度。而FFCMW算法通过FFT变换,将计算复杂度降低到O(NlogN + CM),显著提升了算法的效率,尤其在处理大规模数据集时,其优势更为
function [U, center] = FFCMW(data, c, m, threshold, maxIter)
% data: 输入数据,每一行代表一个样本
% c: 聚类个数
% m: 模糊指数
% threshold: 收敛阈值
% maxIter: 最大迭代次数
[N, M] = size(data);
data = zscore(data); % 数据标准化
data_fft = fft(data, [], 2); % FFT变换
% 初始化隶属度矩阵U和聚类中心center
U = rand(N, c);
U = U ./ sum(U, 2);
center = data(randperm(N, c), :);
center_fft = fft(center, [], 2);
for iter = 1:maxIter
% 计算频域相似性
dist = zeros(N, c);
for i = 1:c
dist(:, i) = abs(data_fft - center_fft(i, :)).^2; % 使用平方差作为相似性度量,可根据实际情况调整
end
% 更新隶属度矩阵
U_old = U;
U = (1 ./ dist).^ (2 / (m - 1));
U = U ./ sum(U, 2);
% 更新聚类中心
for i = 1:c
center(i, :) = (U(:, i)'.^m * data) / sum(U(:, i).^m);
center_fft(i, :) = fft(center(i, :), [], 2);
end
% 判断是否收敛
if sum(sum(abs(U - U_old))) < threshold
break;
end
end
end
总而言之,基于快速傅里叶变换的快速模糊C均值聚类算法FFCMW,通过将数据转换到频域进行计算,有效降低了算法的计算复杂度,提升了算法的效率。这为大规模数据集的模糊聚类分析提供了新的思路和方法,具有重要的应用价值。 未来的研究可以进一步探索更优的频域相似性度量方法,以及将FFCMW算法与其他优化算法结合,以进一步提升其性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类