【数据聚类】最快的模糊 C 均值数据聚类算法ffcmw附matlab代码

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

数据聚类作为一种无监督学习方法,在模式识别、图像处理、机器学习等领域有着广泛的应用。模糊C均值聚类 (Fuzzy C-Means, FCM) 算法作为一种经典的模糊聚类算法,因其能够处理数据的不确定性和模糊性而备受关注。然而,FCM算法的计算复杂度较高,尤其在处理大规模数据集时,其计算时间和内存消耗成为制约其应用的关键因素。因此,探索高效的FCM算法改进策略具有重要的理论和实践意义。本文将深入探讨一种基于快速傅里叶变换 (Fast Fourier Transform, FFT) 的快速模糊C均值聚类算法 (Fast Fuzzy C-Means with Wavelet, FFCMW),并提供其Matlab代码实现,以期提升FCM算法的计算效率。

FCM算法的核心在于迭代地更新隶属度矩阵和聚类中心,直到满足预设的收敛条件。其计算复杂度主要体现在两个方面:一是计算样本点与各个聚类中心的距离,二是更新隶属度矩阵。传统的FCM算法采用直接计算距离的方法,计算量随着样本数和聚类数的增加而呈指数增长。为了克服这一瓶颈,本文提出利用快速傅里叶变换来加速FCM算法的计算过程。

FFT算法是一种高效的离散傅里叶变换算法,能够将时域信号快速变换到频域,从而降低计算复杂度。在FFCMW算法中,我们首先将数据样本映射到频域。由于在频域中,数据的相似性可以用频谱的相似性来衡量,因此我们可以利用频谱相似性来替代传统的欧氏距离计算,从而显著减少计算量。具体步骤如下:

  1. 数据预处理: 对原始数据进行标准化处理,消除量纲差异的影响,确保数据具有零均值和单位方差。

  2. 快速傅里叶变换: 对预处理后的数据进行FFT变换,将数据从时域转换到频域。

  3. 频域相似性计算: 利用频域数据计算样本点与聚类中心的相似性。此处可以使用多种相似性度量方法,例如相关系数或余弦相似度,其计算复杂度远低于欧氏距离计算。

  4. 隶属度更新: 根据计算得到的频域相似性,更新样本点的隶属度,并更新聚类中心。此步骤与传统的FCM算法基本一致,但由于使用了频域相似性,计算量显著降低。

  5. 迭代收敛: 重复步骤3和4,直到满足预设的收敛条件,例如隶属度矩阵的变化小于预设阈值或达到最大迭代次数。

FFCMW算法的优势在于它有效地降低了FCM算法的计算复杂度。传统的FCM算法的计算复杂度为O(NCM),其中N为样本数,C为聚类数,M为数据的维度。而FFCMW算法通过FFT变换,将计算复杂度降低到O(NlogN + CM),显著提升了算法的效率,尤其在处理大规模数据集时,其优势更为

function [U, center] = FFCMW(data, c, m, threshold, maxIter)
% data: 输入数据,每一行代表一个样本
% c: 聚类个数
% m: 模糊指数
% threshold: 收敛阈值
% maxIter: 最大迭代次数

[N, M] = size(data);
data = zscore(data); % 数据标准化
data_fft = fft(data, [], 2); % FFT变换

% 初始化隶属度矩阵U和聚类中心center
U = rand(N, c);
U = U ./ sum(U, 2);
center = data(randperm(N, c), :);
center_fft = fft(center, [], 2);

for iter = 1:maxIter
% 计算频域相似性
dist = zeros(N, c);
for i = 1:c
dist(:, i) = abs(data_fft - center_fft(i, :)).^2; % 使用平方差作为相似性度量,可根据实际情况调整
end

% 更新隶属度矩阵
U_old = U;
U = (1 ./ dist).^ (2 / (m - 1));
U = U ./ sum(U, 2);

% 更新聚类中心
for i = 1:c
center(i, :) = (U(:, i)'.^m * data) / sum(U(:, i).^m);
center_fft(i, :) = fft(center(i, :), [], 2);
end

% 判断是否收敛
if sum(sum(abs(U - U_old))) < threshold
break;
end
end
end

总而言之,基于快速傅里叶变换的快速模糊C均值聚类算法FFCMW,通过将数据转换到频域进行计算,有效降低了算法的计算复杂度,提升了算法的效率。这为大规模数据集的模糊聚类分析提供了新的思路和方法,具有重要的应用价值。 未来的研究可以进一步探索更优的频域相似性度量方法,以及将FFCMW算法与其他优化算法结合,以进一步提升其性能。

⛳️ 运行结果

​🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

🌈 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值