✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
极限学习机 (ELM) 作为一种新型的单隐层前馈神经网络,凭借其训练速度快、泛化性能好等优点,在诸多领域得到了广泛应用。然而,ELM 的性能很大程度上依赖于输入权重和隐层偏置的随机初始化,这使得其预测精度存在不稳定性,尤其在处理复杂的多变量时间序列多步预测问题时,这种不稳定性更为显著。因此,针对ELM算法的改进与优化研究成为当前的一个热点。本文将重点探讨DBO-ELM、SSA-ELM、PSO-ELM和GOOSE-ELM四种优化算法及其在多变量时间序列多步预测中的应用,并对其优缺点进行比较分析。
一、极限学习机(ELM) 原理及局限性
ELM的核心思想是随机生成输入权重和隐层偏置,并通过最小二乘法求解输出权重。相较于传统的梯度下降法训练神经网络,ELM避免了迭代训练过程中的局部最小值问题,显著提高了训练效率。然而,ELM的性能受随机初始化参数的影响较大。不同的初始化参数可能导致不同的预测结果,缺乏稳定性。此外,在处理非线性、高维和长序列的多变量时间序列时,ELM的预测精度和泛化能力常常难以满足实际需求。
二、基于不同优化算法的ELM改进
为了克服ELM的局限性,研究者们提出了各种优化算法来改进其性能。以下将详细介绍DBO-ELM、SSA-ELM、PSO-ELM和GOOSE-ELM四种算法:
(一) DBO-ELM (Differential Bacteria Optimization ELM)
差分细菌优化算法 (DBO) 是一种基于生物启发的优化算法,它模拟细菌在环境中的生长、繁殖和死亡过程。DBO-ELM将DBO算法应用于ELM的输入权重和隐层偏置的优化。DBO算法通过迭代寻优,能够找到一组更优的ELM参数,从而提高预测精度和稳定性。DBO算法的优势在于其全局搜索能力强,能够有效避免陷入局部最优解。然而,DBO算法的计算复杂度较高,在处理大规模数据时效率可能会降低。
(二) SSA-ELM (Salp Swarm Algorithm ELM)
水母群算法 (SSA) 是一种新型的元启发式优化算法,其灵感来源于水母群的觅食行为。SSA-ELM利用SSA算法优化ELM的输入权重和隐层偏置。SSA算法具有收敛速度快、寻优能力强的优点,能够有效地提高ELM的预测精度。与DBO相比,SSA算法的计算复杂度相对较低,更适合处理大规模数据。然而,SSA算法的参数设置对算法性能影响较大,需要进行仔细调整。
(三) PSO-ELM (Particle Swarm Optimization ELM)
粒子群优化算法 (PSO) 是一种基于群体智能的优化算法,其模拟鸟群或鱼群的群体行为。PSO-ELM利用PSO算法优化ELM的输入权重和隐层偏置。PSO算法简单易懂,收敛速度快,且易于实现,在优化ELM参数方面表现良好。然而,PSO算法容易陷入局部最优,尤其在处理复杂的多变量时间序列时,其全局搜索能力可能不足。
(四) GOOSE-ELM (Grey Wolf Optimizer ELM)
灰狼优化算法 (GOOSE) 是一种基于灰狼群体捕猎行为的优化算法。GOOSE-ELM利用GOOSE算法优化ELM的输入权重和隐层偏置。GOOSE算法具有全局搜索能力强、收敛速度快等优点,能够有效提高ELM的预测精度和稳定性。与PSO相比,GOOSE算法在跳出局部最优方面表现更好,但其参数设置也需要谨慎调整。
三、多变量时间序列多步预测中的应用及比较
上述四种优化算法都能够有效提高ELM在多变量时间序列多步预测中的性能。然而,它们的性能表现与具体问题和数据集密切相关。DBO-ELM和GOOSE-ELM在处理复杂非线性问题时通常表现较好,但计算成本较高。SSA-ELM和PSO-ELM则在计算效率方面具有优势,但可能在精度方面略逊于前两者。选择合适的优化算法需要根据实际应用场景进行权衡。此外,还需要考虑算法参数的调整,以及特征选择、数据预处理等因素对预测结果的影响。
四、结论与展望
本文综述了DBO-ELM、SSA-ELM、PSO-ELM和GOOSE-ELM四种优化ELM算法在多变量时间序列多步预测中的应用。这些算法通过优化ELM的输入权重和隐层偏置,有效提高了ELM的预测精度和稳定性。未来研究可以集中在以下几个方面:
-
开发更高效的优化算法,降低计算复杂度,提高预测速度。
-
结合深度学习技术,进一步提升ELM在多变量时间序列多步预测中的性能。
-
研究不同优化算法的混合策略,以发挥各自优势,提高预测精度和鲁棒性。
-
探讨如何更好地处理缺失数据、噪声数据等实际问题。
⛳️ 运行结果

🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
7924

被折叠的 条评论
为什么被折叠?



