【路径规划】基于A算法和Dijkstra算法的路径规划附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

路径规划作为人工智能和机器人学领域的核心问题之一,旨在寻找从起始点到目标点之间代价最小的路径。它在导航、交通、游戏、物流等诸多领域都有着广泛的应用。Dijkstra算法和A*算法是两种经典的路径规划算法,它们凭借其高效性和可靠性,在解决各种路径规划问题中发挥着重要作用。本文将深入探讨这两种算法的原理、特点、优缺点,并对其适用场景进行分析,以期为读者提供对路径规划算法更全面的理解。

Dijkstra算法是一种贪心算法,由荷兰计算机科学家Edsger W. Dijkstra于1959年提出。其基本思想是从起始点出发,逐步扩展搜索范围,直到到达目标点为止。算法维护一个距离集合,用于记录从起始点到每个节点的当前最短距离。初始时,起始点的距离为0,其余节点的距离为无穷大。算法每次选择距离最小的节点进行扩展,更新其相邻节点的距离,直到所有节点都被访问或者到达目标点。

Dijkstra算法的核心在于其贪心策略,每次选择当前距离起始点最近的节点进行扩展,保证了搜索的效率。其优势在于:

  • 完备性 (Completeness):

     如果存在一条从起始点到目标点的路径,Dijkstra算法保证能够找到这条路径。

  • 最优性 (Optimality):

     Dijkstra算法能够找到从起始点到目标点的最短路径。

然而,Dijkstra算法也存在一些局限性:

  • 时间复杂度较高:

     在最坏情况下,Dijkstra算法的时间复杂度为O(n^2),其中n为节点数量。当节点数量较大时,算法的运行时间会显著增加。

  • 搜索范围过大:

     Dijkstra算法是一种盲目搜索算法,它会向各个方向进行搜索,导致搜索范围过大,效率较低。尤其是当目标点距离起始点较远时,Dijkstra算法需要遍历大量的节点,才能找到目标点。

  • 不适用于动态环境:

     Dijkstra算法需要在已知完整的地图信息的前提下才能进行路径规划。当环境发生变化,例如道路封闭或出现障碍物时,需要重新计算整个路径。

A算法是在Dijkstra算法的基础上进行改进的启发式搜索算法。它引入了启发式函数来估计从当前节点到目标节点的距离,从而引导搜索方向,提高搜索效率。A算法的代价函数可以表示为:

f(n) = g(n) + h(n)

其中:

  • f(n)

     是节点n的估价函数,表示从起始点经过节点n到达目标点的总代价。

  • g(n)

     是从起始点到节点n的实际代价。

  • h(n)

     是从节点n到目标点的启发式代价,也称为启发式函数。

启发式函数的设计对于A*算法的性能至关重要。一个好的启发式函数应该满足以下条件:

  • 可接受性 (Admissibility):

     启发式函数估计的代价必须小于或等于实际代价。

  • 一致性 (Consistency):

     对于任意两个相邻的节点n和m,从节点n到目标节点的估计代价应该小于或等于从节点n到节点m的实际代价加上从节点m到目标节点的估计代价。

常用的启发式函数包括欧几里得距离、曼哈顿距离和对角距离。

A*算法的优势在于:

  • 效率更高:

     A*算法通过启发式函数引导搜索方向,减少了搜索范围,提高了搜索效率。

  • 完备性:

     在满足一定条件下(例如启发式函数可接受),A*算法能够找到从起始点到目标点的路径。

  • 最优性:

     在满足一定条件下(例如启发式函数一致),A*算法能够找到从起始点到目标点的最短路径。

A*算法也存在一些局限性:

  • 启发式函数的设计难度:

     启发式函数的设计需要根据具体问题进行选择和调整,一个不合适的启发式函数可能会导致搜索效率降低,甚至无法找到最优路径。

  • 内存占用较高:

     A*算法需要维护一个开放列表,用于存储待扩展的节点。当节点数量较大时,开放列表会占用大量的内存。

  • 不适用于动态环境:

     与Dijkstra算法类似,A*算法也需要在已知完整的地图信息的前提下才能进行路径规划。

Dijkstra算法和A*算法的应用场景各有侧重。Dijkstra算法适用于地图信息较小、节点数量不多,且需要保证找到最短路径的场景,例如:

  • 城市交通导航:

     在城市交通网络中,节点数量相对较少,且需要规划最短的行驶路线。

  • 网络路由协议:

     在网络路由中,需要寻找从源节点到目标节点的最短路径。

A*算法适用于地图信息较大、节点数量较多,且允许牺牲一定程度的最优性来换取更高效率的场景,例如:

  • 游戏AI:

     在游戏中,需要快速地为游戏角色规划路径,同时保证路径的合理性。

  • 机器人路径规划:

     在机器人导航中,需要为机器人规划一条安全且高效的路径,以避免碰撞障碍物。

  • 物流配送:

     在物流配送中,需要规划最优的配送路线,以降低成本和提高效率。

此外,在实际应用中,还可以对Dijkstra算法和A*算法进行改进和优化,以适应不同的应用场景。例如,可以使用双向搜索来进一步提高搜索效率,或者使用分层搜索来处理大规模的路径规划问题。

总而言之,Dijkstra算法和A算法是两种经典的路径规划算法,它们在理论和实践中都发挥着重要的作用。Dijkstra算法保证了完备性和最优性,但效率较低。A算法通过引入启发式函数,提高了搜索效率,但在启发式函数的设计上存在一定的难度。在选择路径规划算法时,需要根据具体问题的特点和需求,权衡各种因素,选择合适的算法。未来的研究方向包括如何设计更高效的启发式函数、如何处理动态环境下的路径规划问题、以及如何将路径规划算法与其他人工智能技术相结合,以解决更复杂的现实问题。 通过不断的研究和发展,路径规划技术将在更多领域发挥更大的作用,为人类的生活和工作带来更多的便利。

⛳️ 运行结果

🔗 参考文献

[1]尹曙明,薛成宬,郝利云,等.基于Dijkstra算法的低轨星座通信路径规划方法优化[J].天地一体化信息网络, 2024, 5(3):55-60.DOI:10.11959/j.issn.2096-8930.2024028.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值