【电力系统】考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球气候变化日益严峻,降低碳排放已成为全球共识。综合能源系统(Integrated Energy System, IES)作为整合电力、热力、天然气等多种能源形式的复杂系统,在提高能源利用效率、降低运行成本以及促进可再生能源消纳方面具有显著优势,因此,优化IES的运行调度对于实现能源转型和可持续发展至关重要。然而,传统IES优化调度方法往往忽略碳排放成本以及用户侧的灵活响应能力,这限制了其在实际应用中的减排潜力。本文旨在探讨一种考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度方法,以期在满足用户需求的同时,有效降低碳排放并提高系统运行的经济性。

一、背景与研究意义

传统的碳排放定价机制通常采用固定碳价,这种方式未能充分考虑碳减排的边际成本递增特性,难以有效激励深度减排。阶梯式碳交易机制则根据碳排放量设置不同的价格梯度,超出排放额度越多,碳价越高,从而更有效地引导企业减少碳排放。另一方面,IES的优化调度往往侧重于能源供给侧的调节,而忽略了需求侧的潜力。随着智能电网和物联网技术的发展,用户侧已经具备了参与系统调度的能力,例如,通过可中断负荷、储能以及电动汽车等实现供需两侧的灵活响应,从而平抑负荷峰谷、提高能源利用效率。因此,将阶梯式碳交易机制与供需灵活双响应相结合,能够更全面地优化IES的运行调度,实现经济效益与环境效益的双赢。

二、阶梯式碳交易机制

阶梯式碳交易机制的核心在于设定不同碳排放量对应的碳价梯度。首先,需要确定系统的基准碳排放量,通常基于历史排放数据或者行业平均水平。然后,根据实际排放量与基准排放量的偏差,划分为不同的碳排放等级,并为每个等级设定不同的碳价。例如,可以采用以下形式:

  • 等级一:

     排放量低于基准排放量,碳价为零或负值(即获得碳排放补贴),鼓励低碳运行。

  • 等级二:

     排放量略高于基准排放量,碳价较低,鼓励进一步减排。

  • 等级三:

     排放量显著高于基准排放量,碳价较高,惩罚高碳排放行为。

阶梯式碳价的设定需要综合考虑多种因素,包括:

  • 减排成本:

     碳价梯度应反映减排的边际成本,鼓励企业优先采用低成本的减排措施,并逐步实施高成本的减排技术。

  • 碳市场供需:

     碳市场供需关系会影响碳价的波动,阶梯式碳价需要根据市场情况进行调整,以保持其激励效应。

  • 政策目标:

     碳价梯度应与国家和地区的碳减排政策目标相一致,确保IES的运行调度能够为实现整体减排目标做出贡献。

三、供需灵活双响应

供需灵活双响应机制是指通过激励用户侧参与系统调度,实现供需两侧的协同优化。主要包括以下几个方面:

  • 需求响应 (Demand Response, DR):

     用户根据电力价格信号或者系统调度指令,调整自身的用电行为。常见的DR方式包括:

    • 可中断负荷:

       用户承诺在系统负荷高峰时段减少或中断部分用电负荷,并获得相应的经济补偿。

    • 需求侧储能:

       用户利用储能设备在低谷时段存储电能,并在高峰时段释放电能,从而平抑负荷峰谷。

    • 电动汽车:

       电动汽车可以作为移动的储能单元,参与电网的调度,实现车辆到电网 (Vehicle-to-Grid, V2G) 的互动。

  • 可控发电 (Controllable Generation):

     用户侧分布式发电系统(例如光伏、风电)可以在满足自身用电需求的同时,将多余的电能回馈给电网,从而增加系统的灵活性。

  • 热电联产 (Combined Heat and Power, CHP):

     CHP系统可以根据电力需求和热力需求,灵活调节发电量和供热量,提高能源利用效率。

实施供需灵活双响应机制需要建立完善的激励机制和信息平台。一方面,需要通过合理的经济激励,鼓励用户参与系统调度;另一方面,需要建立高效的信息平台,实现用户、电网和调度中心之间的信息交互,确保调度指令的准确性和及时性。

四、IES优化调度模型

将阶梯式碳交易机制与供需灵活双响应相结合,需要建立一个综合的优化调度模型,该模型的目标是在满足用户需求的前提下,最小化系统的运行成本,包括能源成本、碳排放成本以及DR补偿成本。该模型通常可以采用混合整数线性规划 (Mixed-Integer Linear Programming, MILP) 或者混合整数非线性规划 (Mixed-Integer Non-Linear Programming, MINLP) 方法进行求解。

⛳️ 运行结果

🔗 参考文献

[1]陈锦鹏,胡志坚,陈嘉滨,等.考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J].高电压技术, 2021, 47(9):11.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值