【鲁棒】辅助机器人外骨骼使用递归神经网络进行决策,以实现鲁棒的轨迹跟踪附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

近年来,辅助机器人外骨骼在医疗康复、工业生产和军事等领域展现出巨大的潜力。然而,外骨骼与人体复杂的交互特性,以及外部环境的不可预测性,对控制系统的鲁棒性提出了极高的要求。传统的控制方法在应对动态变化的负载、环境干扰以及用户非线性运动意图时往往表现出局限性。本文探讨了一种基于递归神经网络(RNN)的决策方法,应用于辅助机器人外骨骼以实现鲁棒的轨迹跟踪。这种方法通过学习历史运动数据和当前状态信息,预测未来运动趋势,从而实现对外骨骼的精确控制,并具备应对干扰和不确定性的能力。

首先,需要明确辅助机器人外骨骼面临的鲁棒性挑战。一方面,人体的运动意图复杂且难以精确建模。不同个体之间、同一个体在不同时间段,其运动模式均存在差异。因此,外骨骼需要能够适应不同用户的运动习惯,并准确理解用户的运动意图。另一方面,外骨骼的应用环境往往存在诸多不确定性。例如,负载的变化、地面起伏、障碍物等都会对系统的稳定性产生影响。此外,外骨骼的机械结构和传感器也会引入噪声和误差。这些因素叠加在一起,使得传统的基于模型控制的方法难以实现令人满意的鲁棒性。

为了克服上述挑战,基于RNN的决策方法提供了一种有效的解决方案。RNN是一种专门用于处理序列数据的神经网络,其独特的循环连接结构使其能够记忆历史信息,并将其用于未来的预测。在外骨骼控制中,可以将用户的运动数据(如关节角度、角速度、力矩等)作为时间序列输入到RNN中,通过训练,RNN可以学习到用户运动模式的内在规律,从而预测未来的运动趋势。

具体而言,可以将RNN用于外骨骼轨迹跟踪控制的以下几个方面:

  1. 运动意图预测: RNN可以根据用户当前和过去一段时间的运动数据,预测用户未来的运动轨迹。这种预测可以提前于用户实际的运动,从而使外骨骼能够更快速、更平稳地响应用户的运动意图,减少人机之间的对抗力,提高控制的舒适性和安全性。

  2. 自适应轨迹规划: 基于RNN预测的运动意图,外骨骼可以动态地调整自身的轨迹规划。例如,当预测到用户即将进行加速运动时,外骨骼可以提前增加输出力矩,以协助用户完成运动。这种自适应的轨迹规划能够有效地应对动态负载和环境变化,提高控制的鲁棒性。

  3. 干扰抑制: 通过训练,RNN可以学习到不同类型干扰对运动的影响规律。当外骨骼受到干扰时,RNN可以根据历史数据和当前状态信息,预测干扰的大小和方向,并采取相应的补偿措施,从而抑制干扰对轨迹跟踪的影响。例如,当外骨骼受到外部冲击时,RNN可以通过调整电机力矩,快速恢复到预定的轨迹。

  4. 模型不确定性补偿: 传统的基于模型的控制方法依赖于精确的系统模型。然而,外骨骼的复杂性使得精确建模变得非常困难。RNN可以通过学习输入输出之间的关系,补偿模型的不确定性,从而提高控制的鲁棒性。即使模型存在误差,RNN仍然能够根据实际情况,调整控制策略,实现精确的轨迹跟踪。

在实现基于RNN的鲁棒轨迹跟踪控制时,需要考虑以下几个关键问题:

  • 网络结构的选择:

     常见的RNN变体包括长短期记忆网络(LSTM)和门控循环单元(GRU)。LSTM和GRU具有记忆长期依赖关系的能力,适合处理复杂的运动序列数据。网络结构的选取需要根据具体的应用场景和数据特点进行优化。

  • 训练数据的获取:

     RNN的性能很大程度上取决于训练数据的质量和数量。需要采集大量的用户运动数据,包括不同用户的运动习惯、不同环境下的运动情况,以及不同类型的干扰数据。

  • 训练算法的优化:

     训练RNN需要使用适当的优化算法,如反向传播算法和梯度下降算法。为了避免过拟合,需要使用正则化技术,如dropout和L1/L2正则化。

  • 实时性考虑:

     外骨骼控制对实时性要求较高。需要对RNN进行优化,以降低计算复杂度,保证控制系统的实时性。可以使用GPU加速或者嵌入式系统等方法来提高计算速度。

为了进一步提高控制的鲁棒性,可以将RNN与其他控制方法相结合。例如,可以将RNN的预测结果作为前馈控制信号,与PID控制器的反馈控制信号相结合,形成混合控制系统。这种混合控制系统既可以利用RNN的预测能力,提前响应用户的运动意图,又可以利用PID控制器的反馈能力,抑制干扰和补偿模型误差。

此外,还可以考虑使用强化学习方法来训练RNN。强化学习是一种通过与环境交互来学习最优策略的方法。可以将外骨骼控制问题建模为强化学习问题,利用强化学习算法训练RNN,使其能够自主地学习到最优的控制策略,从而实现更加鲁棒的轨迹跟踪。

基于RNN的决策方法为辅助机器人外骨骼的鲁棒轨迹跟踪控制提供了一种有效的解决方案。通过学习历史运动数据和当前状态信息,RNN可以预测未来的运动趋势,实现对外骨骼的精确控制,并具备应对干扰和不确定性的能力。然而,在实际应用中,需要考虑网络结构的选择、训练数据的获取、训练算法的优化以及实时性等问题。通过不断的研究和探索,基于RNN的辅助机器人外骨骼控制技术将会在医疗康复、工业生产和军事等领域发挥越来越重要的作用。未来研究方向包括:自适应学习框架的设计,能够根据用户行为动态调整RNN参数;多模态数据融合,将视觉、触觉等信息融入RNN决策过程;以及人机协同控制,实现人与外骨骼之间更加自然、高效的交互。

⛳️ 运行结果

🔗 参考文献

[1] 叶强果,机械机械工程.下肢外骨骼机器人气动肌肉柔性关节控制策略研究[D].重庆理工大学[2025-03-29].

[2] 王建宇,谢宗武,刘宏.外骨骼机器人手指的鲁棒跟踪控制[J].华南理工大学学报:自然科学版, 2008, 36(10):6.DOI:10.3321/j.issn:1000-565X.2008.10.022.

[3] 李俊杰.外骨骼步态检测系统的研究与实现[D].电子科技大学[2025-03-29].DOI:CNKI:CDMD:2.1013.331063.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值