【有功功率、无功功率】可再生能源配电馈线的鲁棒经济调度研究[IEEE13节点]附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

 随着全球对清洁能源需求的不断增长,可再生能源,尤其是风能和太阳能,在现代电力系统中的渗透率日益提高。然而,可再生能源固有的间歇性和不确定性为配电系统的经济高效运行带来了严峻挑战。传统的电力系统调度策略往往基于确定的预测值,难以有效应对可再生能源出力波动带来的风险。因此,研究包含可再生能源的配电馈线鲁棒经济调度策略具有重要的理论和实践意义。本文聚焦于IEEE 13节点测试系统,深入探讨了考虑有功功率和无功功率的配电馈线鲁棒经济调度问题,旨在开发一种能够应对可再生能源不确定性、确保系统安全稳定运行、并实现经济效益最大化的调度方法。

关键词: 有功功率;无功功率;可再生能源;配电馈线;鲁棒经济调度;IEEE 13节点;不确定性

引言

在全球应对气候变化和推动可持续发展的背景下,以风电和光伏为代表的可再生能源正以前所未有的速度融入电力系统。相较于传统的集中式发电,可再生能源多以分布式电源(Distributed Generation, DG)的形式接入配电网,这使得配电网由传统的无源网络逐步向有源网络转变。这种转变在提高能源利用效率、减少碳排放的同时,也带来了新的挑战。可再生能源出力的波动性、随机性和间歇性对配电网的运行稳定性、电能质量以及经济性产生了显著影响。

传统的配电网运行调度主要关注有功功率平衡,对无功功率的调度相对次要。然而,随着DG的广泛接入,尤其是一些并网逆变器具有无功调节能力,无功功率在维持电压稳定、降低线路损耗、提高系统运行效率方面的重要性日益凸显。因此,在考虑可再生能源的配电系统调度中,同时考虑有功功率和无功功率的优化调度至关重要。

此外,可再生能源出力预测的固有误差使得基于确定性预测的传统调度方法难以有效应对实际运行中的不确定性。预测偏差可能导致系统运行偏离最优状态,甚至引发电压越限、线路过载等安全问题。因此,研究能够抵御可再生能源不确定性影响的鲁棒调度方法成为当务之急。鲁棒调度旨在寻求一个在最坏情况下表现良好的调度方案,即使在可再生能源出力存在较大波动的情况下,也能保证系统的安全稳定运行。

本文将以典型的IEEE 13节点测试系统为研究对象,构建包含风电和光伏等可再生能源的配电系统模型。在此基础上,我们将深入研究考虑有功功率和无功功率联合调度的鲁棒经济调度问题。目标是开发一种能够有效应对可再生能源不确定性,同时兼顾运行成本和系统安全约束的调度策略。

一、 可再生能源与配电馈线建模

1.1 IEEE 13节点测试系统概述

IEEE 13节点测试系统是一个广泛用于配电网研究的标准测试系统,它代表了一个典型的工业和住宅混合区域的配电网络。该系统包含13个节点、13条支路(馈线段)以及负荷、电容器组等元件。其结构紧凑,能够反映配电网的典型特征,是进行配电系统分析和算法验证的良好平台。本文将基于该标准系统进行拓展,引入可再生能源DG。

1.2 可再生能源DG建模

本文主要考虑风电和光伏两种典型的可再生能源形式。其建模方式如下:

  • 风力发电机(Wind Turbine Generator, WTG):

     风力发电机的出力通常与风速相关。考虑风速的随机性,风电出力可以建模为服从特定概率分布的随机变量。常见的建模方法包括使用Beta分布或Weibull分布来描述风速的概率分布,再通过风机的功率曲线将风速转化为风电出力。在鲁棒调度中,通常采用区间预测或场景生成的方法来描述风电出力的不确定性范围。

  • 光伏发电机(Photovoltaic Generator, PV):

     光伏发电机的出力主要与太阳辐照度和温度相关。太阳辐照度同样具有随机性和不确定性。光伏出力可以建模为服从特定分布的随机变量,例如使用Beta分布或正态分布。与风电类似,光伏出力的不确定性也可以通过区间预测或场景生成来描述。

为了进行鲁棒调度,我们需要对可再生能源出力的不确定性进行建模。常见的鲁棒建模方法包括:

  • 基于不确定性集的鲁棒优化:

     假定可再生能源出力在一个已知的不确定性集合内变化。鲁棒优化问题旨在找到一个在最坏情况下(即在该不确定性集合内,使目标函数最不利的可再生能源出力组合)仍然满足所有约束并优化目标函数的调度方案。

  • 基于概率分布的鲁棒优化:

     考虑可再生能源出力服从特定概率分布,通过求解概率约束优化问题或利用随机规划的思想来寻找鲁棒解。

  • 场景分析法:

     生成一系列代表可再生能源出力可能场景的样本,将鲁棒调度问题转化为求解在所有或部分场景下都满足约束的调度方案。

本文将倾向于采用基于不确定性集的鲁棒优化方法,因为它无需精确的概率分布信息,且能够保证在整个不确定性集合内的鲁棒性。具体而言,我们将假设风电和光伏出力在其预测值的一定百分比范围内波动,形成一个矩形不确定性集合。

1.3 配电网潮流模型

为了分析和调度配电系统,需要建立其潮流模型。配电网通常采用节点电压方程进行潮流计算。在考虑有功和无功功率调度的背景下,需要建立包含有功功率平衡和无功功率平衡的潮流方程:

  • 节点有功功率平衡方程:

     每个节点的注入有功功率等于该节点流出的有功功率之和,加上该节点连接设备的有功损耗。

  • 节点无功功率平衡方程:

     每个节点的注入无功功率等于该节点流出的无功功率之和,加上该节点连接设备的无功损耗。

潮流方程是非线性的,通常采用牛顿-拉夫逊法或前推回代法等迭代算法进行求解。在优化调度问题中,为了便于求解,通常将非线性的潮流方程进行线性化或采用凸松弛技术。

二、 鲁棒经济调度问题 formulation

鲁棒经济调度的目标是在考虑可再生能源不确定性的情况下,最小化配电系统的运行成本,同时满足各项运行约束,包括:

  • 潮流平衡约束:

     确保各节点有功功率和无功功率的平衡。

  • 电压约束:

     各节点电压幅值需保持在允许的范围内。

  • 支路容量约束:

     各馈线段的潮流不能超过其载流量限制。

  • DG出力约束:

     可再生能源和传统DG(如柴油发电机)的出力需在其运行范围内。

  • 变压器容量约束:

     变压器的传输容量限制。

  • 无功补偿设备出力约束:

     电容器组等无功补偿设备的出力范围。

运行成本主要包括:

  • 主网购电成本:

     从上级电网购买电能的费用。

  • 传统DG运行成本:

     柴油发电机等传统DG的燃料成本和运行维护成本。

  • 线路损耗成本:

     电能在传输过程中产生的损耗所带来的费用。

  • 切负荷成本:

     在系统出现紧急情况时,为保证系统安全不得不采取的切除部分负荷的成本,这通常是较高的惩罚项。

  • 可再生能源弃电成本(可选):

     在某些情况下,为了保证系统安全或经济性,可能需要限制可再生能源的出力,产生弃电成本。

鲁棒经济调度问题可以表述为一个两阶段或单阶段的优化问题。本文将采用单阶段鲁棒优化方法,将不确定性建模直接融入优化模型中。

2.1 目标函数

鲁棒经济调度的目标函数通常是最小化在最坏情况下(不确定性集合内)的运行成本。

2.2 约束条件

鲁棒优化问题需要确保在不确定性集合内的所有可能场景下都满足运行约束。这些约束通常需要改写为鲁棒对应项。例如,对于线性约束 Ax≤bAx≤b,其中部分参数受不确定性影响,其鲁棒对应项通常是保证在不确定性集合内该约束都成立。对于电力系统约束,由于潮流方程的非线性,直接进行鲁棒化处理较为复杂。常用的方法包括:

  • 线性化或近似处理:

     将非线性的潮流方程在某个工作点附近进行线性化,然后对线性化后的模型进行鲁棒优化。

  • 凸松弛:

     将非凸的潮流约束松弛为凸约束,然后在凸松弛后的模型上进行鲁棒优化。

  • 列与约束生成算法:

     将鲁棒优化问题转化为一个迭代求解过程,通过生成最坏情况下的场景来逐步逼近鲁棒解。

2.3 考虑有功和无功功率的调度变量

鲁棒经济调度问题中的决策变量包括:

  • 主网购电功率(有功和无功)。
  • 传统DG的有功和无功出力。
  • 可再生能源的实际有功出力(可能受限)。
  • 无功补偿设备的无功出力。
  • 节点电压相角和幅值。
  • 支路潮流(有功和无功)。
  • 切负荷量。

在鲁棒调度中,一些决策变量可能是“事前”决策(在不确定性发生前确定),而另一些可能是“事后”决策(在不确定性发生后根据实际情况进行调整)。对于本文的单阶段鲁棒优化,我们将主要关注事前决策变量,通过鲁棒对应项来约束在不确定性下的系统响应。

三、 IEEE 13节点系统应用与建模

为了将上述鲁棒经济调度模型应用于IEEE 13节点系统,我们需要进行以下具体建模:

  • 节点和支路参数:

     基于IEEE 13节点标准数据,包括节点阻抗、支路电阻和电抗、变压器参数等。

  • 负荷建模:

     考虑不同节点的有功和无功负荷。负荷可以被视为确定性参数,或者在更复杂的模型中,负荷本身也可以具有不确定性。本文主要关注可再生能源的不确定性,因此将负荷视为确定性。

  • 约束条件具体化:

     将前文提到的通用约束条件根据IEEE 13节点系统的具体结构和设备参数进行详细建模。例如,节点电压约束需要参照该系统的额定电压;支路容量约束需要根据各馈线段的载流量设定。

  • 成本函数参数化:

     设定主网购电价格、传统DG运行成本函数、线路损耗折算成本、切负荷惩罚成本等参数。

在具体实施鲁棒优化求解时,可以采用以下方法:

  • 转化为两阶段鲁棒优化:

     将单阶段鲁棒问题转化为一个包含内层最坏情况优化问题的两阶段优化问题,然后利用对偶理论将内层问题对偶化,转化为一个单层的鲁棒对应项。

  • 列与约束生成算法(Column-and-Constraint Generation, C&CG):

     对于大规模的鲁棒优化问题,C&CG算法是一种有效的求解方法。它通过迭代地生成最坏情况下的场景和对应的约束来求解鲁棒问题。

四、 鲁棒经济调度的结果与分析

通过求解上述鲁棒经济调度模型,我们可以得到在考虑可再生能源不确定性下的最优调度方案。对调度结果进行分析,可以获得以下关键信息:

  • 鲁棒调度策略下的各节点有功和无功潮流分布:

     分析在应对不确定性时,系统如何调整有功和无功功率流向。

  • DG和无功补偿设备的出力情况:

     了解在鲁棒调度中,DG和无功补偿设备如何协同工作以维持系统稳定。

  • 系统运行成本:

     评估鲁棒调度相对于确定性调度的成本增加,以及这种增加带来的鲁棒性收益。

  • 电压分布和线路负荷:

     检查在最坏情况下,系统是否满足电压和线路容量约束,验证鲁棒性。

  • 鲁棒性水平对调度结果的影响:

     分析不确定性水平参数的变化如何影响调度策略和运行成本。更高的不确定性水平通常会导致更保守的调度策略和更高的运行成本,但能提供更强的鲁棒性。

  • 有功和无功协同调度的有效性:

     比较只考虑有功调度和同时考虑有功无功调度的结果,评估无功调控对鲁棒性和经济性的贡献。

五、 讨论与未来展望

本文提出的基于IEEE 13节点系统的可再生能源配电馈线鲁棒经济调度研究,为应对可再生能源不确定性提供了一种有效的调度方法。然而,本研究仍存在一些可以深入探讨和拓展的方向:

  • 更精确的不确定性建模:

     除了矩形集合,可以考虑采用其他更复杂的不确定性集合,如椭球不确定性或多面体不确定性,以更好地反映可再生能源出力的实际波动特征。还可以结合概率信息,研究基于分布鲁棒优化的调度方法。

  • 动态鲁棒调度:

     本文侧重于单时段的鲁棒调度。未来的研究可以考虑多时段的动态鲁棒调度,即考虑调度方案在不同时间段内的调整和不确定性的演变。

  • 故障与紧急情况的鲁棒性:

     除了可再生能源不确定性,配电系统还可能面临故障等紧急情况。未来的研究可以将故障鲁棒性与不确定性鲁棒性相结合。

  • 储能系统的作用:

     储能系统具有灵活的充放电能力,能够有效平抑可再生能源的波动。将储能系统纳入鲁棒调度模型,可以进一步提高系统的鲁棒性和经济性。

  • 电动汽车的影响:

     电动汽车的大规模普及将对配电网产生新的影响,其充电负荷具有随机性和不确定性。将电动汽车充电负荷纳入鲁棒调度研究具有重要意义。

  • 考虑需求侧响应:

     需求侧响应能够通过改变负荷模式来提高系统的灵活性和鲁棒性。将需求侧响应引入鲁棒调度模型,可以进一步优化系统运行。

  • 算法效率的提升:

     鲁棒优化问题的规模通常较大,求解难度高。未来的研究可以致力于开发更高效的鲁棒优化算法,以适应实时调度需求。

结论

本文基于IEEE 13节点测试系统,深入研究了考虑有功功率和无功功率的可再生能源配电馈线鲁棒经济调度问题。通过建立详细的系统模型和鲁棒优化模型,旨在应对可再生能源出力的不确定性,在确保系统安全可靠运行的前提下实现经济效益最大化。研究结果将有助于揭示在含高渗透率可再生能源的配电网中,有功无功协同调度在增强系统鲁棒性方面的重要作用。尽管鲁棒调度可能带来一定的成本增加,但其在抵御不确定性风险、保障系统安全方面的优势使其成为未来配电网调度研究的重要方向。未来的研究将围绕更精细化的不确定性建模、动态调度、多重不确定性源以及新型设备(如储能、电动汽车)的影响等方面展开,以期为构建更加智能、灵活和鲁棒的现代配电系统提供理论支持和技术指导。

⛳️ 运行结果

🔗 参考文献

[1] 李培帅.高渗透率可再生能源并网的主动配电网无功优化研究[D].东南大学[2025-04-26].

[2] 陈长金.电能质量扰动源定位算法的研究[D].山东大学[2025-04-26].

[3] 戴彦,倪以信,文福拴,et al.基于潮流组成成分析及成本分摊的无功功率电价[J].电力系统自动化, 2000, 24(18):5.DOI:CNKI:SUN:DLXT.0.2000-18-003.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值