✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在诸多科学与工程领域,例如机器人导航、金融建模、目标跟踪和信号处理等,对动态系统的状态进行精确估计是至关重要的任务。然而,实际系统中往往伴随着非线性和噪声,使得传统的线性高斯模型下的状态估计方法,如卡尔曼滤波器,难以有效地处理。为了应对这些挑战,研究人员发展了多种先进的非线性状态估计算法,其中粒子滤波器(Particle Filter, PF)、Σ点卡尔曼滤波器(Sigma Point Kalman Filter, SPKF,也常称为无迹卡尔曼滤波器Unscented Kalman Filter, UKF)以及扩展卡尔曼滤波器(Extended Kalman Filter, EKF)是具有代表性的三类方法。本文旨在对这三种非线性状态估计算法进行深入的研究和比较,探讨它们的理论基础、工作原理、优缺点以及适用场景,以期为实际应用中的算法选择提供理论指导。
一、 扩展卡尔曼滤波器(Extended Kalman Filter, EKF)
扩展卡尔曼滤波器是最早应用于非线性系统状态估计的算法之一。其核心思想是通过在工作点附近进行局部线性化,将非线性问题近似为线性问题,然后应用标准的卡尔曼滤波框架进行状态预测和更新。
1.1 优点
- 计算效率较高:
EKF 的计算复杂度主要取决于雅可比矩阵的计算和矩阵的乘逆运算,对于低维系统,计算量相对较小。
- 易于实现:
其算法结构与标准卡尔曼滤波器相似,相对容易理解和实现。
1.2 缺点
- 对非线性程度敏感:
EKF 依赖于局部线性化近似,当非线性程度较强时,线性化误差可能较大,导致估计精度下降甚至发散。
- 需要计算雅可比矩阵:
需要显式计算状态转移函数和观测函数的雅可比矩阵,这在函数形式复杂或不可导的情况下会带来困难。
- 忽略高阶项:
线性化忽略了非线性函数的高阶项,可能无法准确捕捉非线性系统的动态特性。
- 对初值敏感:
局部线性化的工作点选择依赖于前一时刻的估计值,如果初值或中间估计出现较大误差,可能导致算法发散。
二、 Σ点卡尔曼滤波器(Sigma Point Kalman Filter, SPKF/UKF)
Σ点卡尔曼滤波器是一种基于概率分布近似的非线性滤波方法。它通过精心选择一系列的“Σ点”(Sigma Points)来近似状态的均值和协方差,并通过非线性函数传播这些Σ点,从而更准确地捕捉非线性变换后的概率分布的均值和协方差,避免了线性化带来的误差。
2.1 工作原理
UKF 的核心在于无迹变换(Unscented Transform)。该变换通过选择 $2n+1$ 个具有特定权重的Σ点来表示一个随机变量的均值和协方差。然后将这些Σ点通过非线性函数传播,再根据传播后的Σ点及其对应的权重计算出非线性变换后随机变量的近似均值和协方差。
2.2 优点
- 无需计算雅可比矩阵:
UKF 通过Σ点的传播来近似非线性变换,无需显式计算函数的导数,这对于函数形式复杂或不可导的情况具有优势。
- 更准确地捕捉均值和协方差:
无迹变换能够更准确地捕捉非线性变换后的概率分布的均值和协方差(至少到二阶矩),相比EKF 的线性化近似更优。
- 对于中等程度的非线性表现良好:
对于非线性程度不太强的系统,UKF 通常能提供比EKF 更精确的估计结果。
2.3 缺点
- 对概率分布形状的假设:
UKF 假设状态的概率分布可以通过其均值和协方差来充分表示(例如高斯分布)。如果实际的分布是非高斯且形状复杂,UKF 的性能可能会下降。
- 参数选择:
UKF 的性能受到Σ点生成参数的影响,需要进行适当的调参。
三、 粒子滤波器(Particle Filter, PF)
粒子滤波器是一种基于蒙特卡洛方法的非线性滤波算法。
3.1 工作原理
粒子滤波器的工作原理基于序列重要性采样(Sequential Importance Sampling, SIS)和重采样(Resampling)。
重采样:
随着时间的推移,粒子权重可能出现退化现象(即少数粒子权重很大,而大多数粒子权重趋近于零),导致粒子集无法有效地表示后验分布。为了解决这个问题,需要进行重采样。重采样的目的是根据当前的粒子权重生成新的粒子集,使得新粒子集的权重均匀,并且粒子分布更能反映当前的后验分布。常用的重采样方法有多项式重采样、系统重采样和残差重采样等。重采样后,新的粒子权重都设置为 $1/N$。
3.2 优点
- 能够处理任意非线性、非高斯系统:
粒子滤波器不依赖于线性化或高斯分布假设,能够处理高度非线性和具有复杂噪声特性的系统。
- 能够处理多模态分布:
当后验概率分布存在多个峰值时,粒子滤波器能够通过粒子集同时表示多个模态,具有处理多目标跟踪等问题的能力。
- 实现相对直观:
基于采样的思想,概念上相对容易理解。
3.3 缺点
- 计算量大:
粒子滤波器的计算量与粒子数量 NN 成正比。为了获得较好的估计精度,通常需要大量的粒子,导致计算负担较重,特别是在高维状态空间中,需要的粒子数量呈指数级增长,面临“维度诅咒”问题。
- 估计精度受粒子数量影响:
粒子数量越多,对后验分布的逼近越精确,但计算量也越大。需要在精度和计算量之间进行权衡。
- 重采样可能引入粒子贫化:
重采样虽然解决了权重退化问题,但也可能导致一些有用的粒子被舍弃,引入粒子贫化,影响估计精度。
- 重要性密度函数的选择:
重要性密度函数的选择对粒子滤波器的性能有重要影响。如果重要性密度函数与真实后验分布差异较大,会导致权重退化,影响估计效果。
四、 三种算法的比较与分析
4.1 适用场景
- EKF:
适用于非线性程度较弱、系统模型相对简单且可以方便计算雅可比矩阵的系统。在对计算效率要求较高,且可以接受一定线性化误差的情况下,EKF 是一个不错的选择。例如,简单的机器人定位和姿态估计。
- UKF:
适用于非线性程度中等、系统模型相对复杂但不需要显式计算雅可比矩阵的系统。当需要比EKF 更高的估计精度,但又希望避免粒子滤波器的“维度诅咒”问题时,UKF 是一个有效的替代方案。例如,更复杂的导航系统、飞行器姿态估计等。
- PF:
适用于高度非线性、非高斯、存在多模态等复杂动态系统。当对估计精度要求非常高,且能够承受较大的计算量时,粒子滤波器能够提供更鲁棒和精确的估计结果。例如,多目标跟踪、机器人同时定位与地图构建(SLAM)在非高斯噪声环境下的应用等。
4.2 局限性与挑战
虽然这些算法为非线性状态估计提供了有效的解决方案,但它们仍然面临一些挑战:
- 模型不确定性:
实际系统中,状态转移函数和观测函数往往存在模型不确定性,这会对滤波器的性能产生影响。
- 噪声特性未知或时变:
过程噪声和观测噪声的统计特性可能未知或随时间变化,需要设计自适应或鲁棒滤波算法。
- 计算效率:
对于高维系统或实时性要求较高的应用,滤波器的计算效率仍然是关键问题。
- 参数调优:
这些算法往往涉及多个参数,合理的参数选择对滤波器的性能至关重要。
五、 未来研究方向
为了克服上述局限性,未来的研究可以关注以下方向:
- 改进的线性化方法:
探索更精确的局部或全局线性化技术,以提高EKF 在强非线性环境下的性能。
- 更高阶矩近似:
研究基于更高阶矩或非参数方法来更准确地逼近非线性变换后的概率分布,例如高斯混合滤波等。
- 更有效的采样策略:
发展更高效的粒子采样和重采样技术,以提高粒子滤波器的计算效率并减轻粒子贫化问题。
- 自适应和鲁棒滤波:
设计能够自适应调整参数或对未知噪声具有鲁棒性的滤波算法。
- 机器学习与深度学习的结合:
将机器学习和深度学习技术应用于非线性状态估计,例如利用神经网络学习状态转移和观测模型,或者直接进行端到端的状态估计。
- 并行计算与硬件加速:
利用并行计算和专用硬件(如GPU)加速滤波器的计算过程,以满足实时性需求。
六、 结论
扩展卡尔曼滤波器、Σ点卡尔曼滤波器和粒子滤波器是处理非线性状态估计问题的三种重要方法。它们在理论基础、工作原理、优缺点和适用场景上存在显著差异。EKF 计算效率高,但对非线性程度敏感;UKF 无需计算雅可比矩阵,能更准确地捕捉二阶矩,适用于中等非线性系统;而PF 能够处理任意非线性、非高斯系统和多模态分布,但计算量大且存在“维度诅咒”问题。
在实际应用中,应根据系统的非线性程度、噪声特性、计算资源限制以及对估计精度的要求,权衡选择合适的滤波算法。对于非线性程度较弱或计算资源有限的场景,EKF 可能是首选;对于非线性程度中等且雅可比矩阵难以计算的场景,UKF 提供了更好的选择;而对于高度非线性、非高斯且存在多模态的复杂系统,尽管计算量较大,粒子滤波器通常能提供最优的估计性能。
⛳️ 运行结果
🔗 参考文献
[1] 李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报(自然科学版), 2007, 34(002):233-238.DOI:10.3969/j.issn.1001-2400.2007.02.015.
[2] 李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报(自然科学版), 2007.
[3] 薛锋,刘忠,石章松.粒子滤波器在机动目标被动跟踪中的应用[J].数据采集与处理, 2007, 22(2):4.DOI:10.3969/j.issn.1004-9037.2007.02.020.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇