✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在数字通信领域,对不同调制方案在各种信道条件下的性能进行准确的预测和分析至关重要。16-QAM(16-ary Quadrature Amplitude Modulation)作为一种高阶调制方式,因其频谱效率优势而被广泛应用于无线通信系统。然而,高阶调制对信道噪声和衰落更为敏感,因此对其误码率(BER)或误符号率(SER)进行精确的性能界限(bound)分析具有重要的理论和实践意义。本文旨在研究在加性高斯白噪声(AWGN)信道和衰落信道(特别是瑞利衰落信道)下,16-QAM 调制方案的几种重要性能界限:联合绑定(Union Bound)、联合-巴塔查里亚绑定(Union-Chernoff Bound 或 Union-Bhattacharyya Bound)和最小欧几里得距离绑定(Minimum Euclidean Distance Bound)。我们将详细探讨这些绑定的推导原理、适用性以及它们在不同信道条件下的紧致性,并对它们之间的关系进行比较分析。
一、通信系统模型与 16-QAM 调制
我们考虑一个典型的数字通信系统,其模型可简化为:
发送端 -> 调制 -> 信道 -> 解调 -> 接收端
其中,信道是影响信号传输的主要因素。本文主要关注 AWGN 信道和衰落信道。
- 16-QAM 调制
16-QAM 是一种二维调制方案,它通过改变载波的幅度和相位来传输信息。
- 衰落信道
衰落信道,特别是瑞利衰落信道,是模拟无线通信环境中由于多径效应引起的信号幅度随机波动的信道模型。
二、性能界限的推导原理
性能界限,如误码率或误符号率的绑定,提供了一种快速估计系统性能的方法,尤其是在精确计算非常困难或计算量巨大的情况下。这些绑定通常是上界,这意味着实际的性能会优于绑定给出的值。绑定的紧致性衡量了绑定与实际性能之间的差距。紧密的绑定能更好地预测性能。
三、具体性能界限的研究
基于成对错误概率,我们可以推导出不同的性能界限。
- 联合-巴塔查里亚绑定 (Union-Bhattacharyya Bound)
联合-巴塔查里亚绑定是一种比联合绑定更紧致的上界,它利用了巴塔查里亚绑定(Bhattacharyya Bound)的概念。巴塔查里亚绑定是基于信号的统计距离,对于二进制假设检验问题,它通常比 Q 函数绑定更紧致。
- 最小欧几里得距离绑定 (Minimum Euclidean Distance Bound)
最小欧几里得距离绑定是一种更宽松但计算最简单的上界,特别是在高 SNR 条件下非常有用。在高 SNR 下,主要的错误概率贡献来自于与发送符号距离最近的那些符号。因此,误符号率可以粗略地由与每个符号距离最小的那些符号的成对错误概率来估计。
最小欧几里得距离绑定的优点是计算非常简单,特别适合在高 SNR 下的性能预测。它的缺点是在低 SNR 下非常不紧致,因为此时距离大于 dmindmin 的错误事件也会对误码率产生显著影响。
四、绑定之间的比较与分析
通过对上述三种绑定的推导和特点的分析,我们可以进行比较:
- 紧致性:
-
在低 SNR 下:联合-巴塔查里亚绑定通常最紧致,其次是联合绑定,最小欧几里得距离绑定最不紧致。
-
在高 SNR 下:联合绑定和联合-巴塔查里亚绑定趋于紧致,且随着 SNR 增加,它们与实际性能曲线的差距逐渐减小。最小欧几里得距离绑定在高 SNR 下也能提供一个有用的近似,其斜率与实际性能在高 SNR 下的斜率一致。
-
- 计算复杂度:
-
最小欧几里得距离绑定计算最简单,只需要找到最小距离和计算具有最小距离的邻居数量。
-
联合绑定和联合-巴塔查里亚绑定需要计算所有可能的符号对之间的距离并求和,计算量相对较大,但对于固定的调制方案(如 16-QAM)是可以事先计算和存储的。
-
- 适用范围:
-
联合绑定和联合-巴塔查里亚绑定适用于各种 SNR 范围,但其紧致性随 SNR 变化。
-
最小欧几里得距离绑定主要适用于高 SNR 条件下的性能预测。
-
在实际应用中,通常会在不同 SNR 范围内选择合适的绑定进行性能评估。例如,在系统设计阶段,可以使用巴塔查里亚绑定或联合绑定来估计系统性能,而在高 SNR 场景下,可以使用最小欧几里得距离绑定快速评估性能。
五、结论
本文对 AWGN 信道和瑞利衰落信道下 16-QAM 调制方案的联合绑定、联合-巴塔查里亚绑定和最小欧几里得距离绑定进行了深入研究。我们详细阐述了这些绑定的推导原理,并分析了它们在不同信道条件下的表现。
联合绑定和联合-巴塔查里亚绑定通过对所有可能的错误事件概率进行求和或近似求和,提供了对误符号率的上界估计。联合-巴塔查里亚绑定在低 SNR 下通常比联合绑定更紧致。
最小欧几里得距离绑定则利用了高 SNR 下主要由最小距离错误事件贡献的特性,提供了一个在高 SNR 下简单且有效的性能预测方法。
对于 16-QAM,这些绑定的具体计算需要对星座图上的距离分布进行详细分析。通过计算不同距离的符号对数量,可以将绑定表达式转化为具体的数值函数,从而用于性能评估。
选择哪种绑定取决于所需的精度、计算复杂度的容忍度以及关注的 SNR 范围。在实际工程应用中,理解这些绑定的特性有助于更好地设计和分析通信系统,预测 16-QAM 调制在不同信道条件下的性能极限,并为选择合适的纠错编码等技术提供理论依据。未来的研究可以进一步探讨其他更紧致的绑定,如截断联合绑定(Truncated Union Bound),或者将这些绑定应用于更复杂的信道模型和调制方案。
⛳️ 运行结果
🔗 参考文献
[1] 柳有权,陆勇.一种基于屏幕标识的机器人三维空间尺度提示方法及系统.CN201911316517.0[2025-05-03].
[2] 马慧生,吕征南,胡静.一种时域频域资源联合绑定的数据传输方法及设备.CN201510674404.3[2025-05-03].
[3] 王向红.一种基于绑定关系的联合支付方法及系统:CN201811430699.X[P].CN110046882A[2025-05-03].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇