✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
正交频分复用(OFDM)技术作为一种高效的多载波调制方案,因其优异的抗多径衰落能力,在无线通信领域得到了广泛应用,尤其在长期演进(LTE)、Wi-Fi等标准中扮演着核心角色。OFDM系统通过将高速数据流划分为多个并行的低速数据流,在相互正交的子载波上进行传输,显著降低了符号速率,从而有效对抗多径引起的符号间干扰(ISI)。然而,OFDM系统对载波频率偏移(CFO)和定时偏移(TO)极为敏感。CFO会破坏子载波间的正交性,引入子载波间干扰(ICI),导致系统性能急剧恶化;TO则会导致接收到的符号起始位置不准确,进一步加剧ISI和符号间干扰(ICI)。因此,在实际OFDM系统中,准确估计并补偿CFO和TO是确保系统可靠通信的关键环节。本文旨在探讨在加性高斯白噪声(AWGN)信道下,OFDM系统载波频率偏移和定时偏移的估计方法。
在AWGN信道下,虽然多径效应得到简化,但接收信号仍然受到热噪声的影响。此时,CFO和TO对系统性能的影响依然显著,甚至在低信噪比(SNR)条件下更为突出。CFO通常是由发送端和接收端本振频率不一致、多普勒频移等因素引起。
为了有效地估计CFO和TO,OFDM系统通常在发送端插入特定的训练序列或导频信号。这些训练序列或导频信号具有已知的结构,接收端可以利用这些已知信息来估计CFO和TO。目前,在AWGN信道下,常见的CFO和TO估计方法主要基于最大似然(ML)准则和利用训练序列的互相关特性。
基于最大似然准则的估计方法试图找到使得接收信号对给定训练序列的概率密度函数最大的CFO和TO值。这种方法理论上可以获得最优的估计性能,尤其在AWGN信道下,其性能可以接近克拉美-拉奥界(CRB)。然而,ML估计通常需要在一个多维参数空间中进行搜索,计算复杂度较高,尤其对于大规模OFDM系统。为了降低复杂度,一些次优的ML估计方法被提出,例如基于期望最大化(EM)算法的迭代估计方法。这些方法通常将CFO和TO的估计问题分解为若干个子问题,通过迭代的方式逐步逼近ML估计结果。在AWGN信道下,由于噪声模型的简单性,ML估计的理论基础较为清晰,但实际实现中仍然面临计算效率的挑战。
另一种常用的估计方法是基于训练序列的互相关特性。这种方法通常利用发送端插入的已知训练序列,例如重复的OFDM符号或伪随机序列(PN序列)。在接收端,将接收到的信号与已知的训练序列进行互相关运算。CFO和TO的存在会导致互相关函数的峰值位置发生偏移或展宽。通过分析互相关函数的特性,可以估计出CFO和TO。例如,基于重复OFDM符号的估计方法,可以利用相邻重复符号在时域上的相关性来估计TO,并通过比较两个重复符号在频域上的相位差来估计CFO。在AWGN信道下,噪声会干扰互相关函数的形状,使得峰值检测变得不准确。为了提高估计精度,通常需要对接收信号进行滤波或多次互相关运算并取平均。
具体的基于训练序列的CFO和TO联合估计方法,例如基于重复训练符号的MIMO-OFDM系统同步算法,虽然主要针对MIMO系统,但其核心思想在单天线OFDM系统AWGN信道下同样适用。存在TO时,互相关函数的峰值会出现在δ=τ。而CFO的存在会导致相关函数的相位发生变化。通过找到相关函数的峰值位置,可以估计出TO;通过分析峰值对应的相位,可以估计出CFO。在AWGN信道下,噪声会使得相关函数的峰值不再尖锐,甚至出现伪峰,影响估计精度。可以通过增加训练符号的长度、多次平均相关函数或者采用一些后处理技术来抑制噪声的影响。
另一种基于训练序列的CFO和TO估计方法是利用PN序列。发送端发送一个已知的PN序列作为训练序列。接收端将接收到的信号与发送端的PN序列进行互相关。PN序列具有尖锐的自相关特性,因此在理想情况下,互相关函数的峰值位置直接对应于定时偏移。CFO的存在会使得互相关函数的形状发生变化。通过二维搜索(时延和频率)或者分步估计的方式,可以估计出CFO和TO。例如,先估计出TO,然后利用TO的估计值,再通过频域上的搜索来估计CFO。在AWGN信道下,PN序列的自相关峰值同样受到噪声的影响,峰值检测的精度会下降。
在AWGN信道下,CFO和TO的估计精度主要受到信噪比(SNR)的影响。SNR越高,估计精度越高;SNR越低,估计误差越大,甚至可能出现估计错误。因此,在低SNR环境下,为了获得可接受的估计性能,可能需要采取一些增强措施,例如增加训练序列的长度、采用更复杂的估计算法、或者利用先验信息辅助估计。例如,一些基于卡尔曼滤波的跟踪算法可以利用之前估计的CFO和TO值来辅助当前时刻的估计,从而提高在动态环境下的估计精度。
除了基于训练序列的方法,一些盲估计方法也被提出。盲估计方法不需要发送已知的训练序列,而是直接利用接收到的OFDM数据符号的统计特性进行估计。例如,一些盲估计方法利用OFDM符号在频域上的稀疏性或者时域上的周期性来进行CFO和TO估计。然而,盲估计方法的计算复杂度通常较高,且在低SNR环境下性能往往不如基于训练序列的方法。在AWGN信道下,由于数据符号的统计特性可能被噪声掩盖,盲估计方法的鲁棒性相对较差。
总而言之,在AWGN信道下,OFDM系统的载波频率偏移和定时偏移估计是保证系统正常运行的关键技术。基于训练序列的估计方法因其相对较低的复杂度而得到广泛应用,尤其是基于重复OFDM符号和PN序列的互相关方法。这些方法虽然在AWGN信道下受到噪声的干扰,但通过合理的算法设计和参数选择,可以获得较好的估计性能。尽管AWGN信道模型相对简单,但它为理解CFO和TO对OFDM系统的影响以及验证估计算法的有效性提供了基础。在实际通信环境中,通常还会存在多径衰落、相位噪声等更复杂的信道效应,这些因素会使得CFO和TO的估计问题更加复杂,需要更先进的估计技术来应对。未来的研究方向可能包括更鲁棒的低SNR估计算法、结合机器学习技术的智能化估计方法,以及能够有效应对复杂动态信道下的联合估计与跟踪算法。
⛳️ 运行结果
🔗 参考文献
[1] 孙永东.LTE在城市铁路环境中时频同步算法的研究[D].兰州交通大学,2017.DOI:10.7666/d.Y3283496.
[2] 谭立新,何艳丽.多径衰落信道的统计特性与仿真研究[J].计算机仿真, 2010(7):4.DOI:10.3969/j.issn.1006-9348.2010.07.023.
[3] 谢水珍.基于m序列的直接序列扩频通信系统仿真[J].信息安全与通信保密, 2012(12):3.DOI:10.3969/j.issn.1009-8054.2012.12.033.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇