【滑模控制】【四轴飞行器】滑模控制应用于四轴飞行器在其中一个推进器故障时的稳定[发动机失效情况下无人机的控制与稳定]Quad3DOF附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

四轴飞行器因其卓越的机动性和灵活性,在诸多领域展现出广阔的应用前景。然而,作为一类典型的欠驱动系统,其对故障的敏感性成为制约其可靠性和安全性的重要因素。特别是单个推进器失效,将导致系统产生非对称的推力,严重影响飞行的稳定性和可控性。传统的线性控制方法,如PID控制,在应对此类非线性、强耦合、存在外部扰动和内部参数变化的故障系统时往往表现出鲁棒性不足。本文深入探讨了滑模控制(Sliding Mode Control, SMC)在四轴飞行器面临单推进器故障情况下的应用,旨在通过其独特的控制机制,实现对故障系统的有效稳定和控制。研究将从四轴飞行器的动力学模型出发,详细分析单推进器故障对系统动态特性的影响,进而构建滑模控制律,以确保系统状态在有限时间内收敛至预定的滑模面,并最终稳定在平衡点附近。通过理论推导和潜在的仿真分析,验证滑模控制在处理四轴飞行器发动机失效这一复杂挑战时的优越性能,为提升无人机在非理想环境下的可靠性和安全性提供理论基础和技术支撑。

关键词:滑模控制;四轴飞行器;单推进器故障;故障容错控制;稳定性;鲁棒性;非线性系统

1. 引言

近年来,无人机技术发展迅速,四轴飞行器作为其中的典型代表,因其结构简单、易于操控、垂直起降能力以及相对较低的成本,广泛应用于航拍、物流、巡检、农业等领域。然而,四轴飞行器本质上是一个复杂的欠驱动系统,其飞行姿态和位置控制高度依赖于四个推进器产生的推力和力矩。任何一个推进器的故障,无论是完全失效还是性能下降,都将显著改变系统的动力学特性,导致飞行器的姿态失控、位置漂移,甚至坠毁。特别是在执行关键任务或在复杂环境下飞行时,单推进器故障可能带来严重的安全风险和经济损失。

传统的四轴飞行器控制方法,如PID控制,通常基于线性化模型设计,在正常飞行状态下表现良好。然而,当系统发生故障时,其动力学模型将发生本质性的变化,同时可能伴随参数的不确定性和外部扰动。PID控制在面对这些非线性和不确定性时,往往难以保证系统的稳定性和控制精度。因此,研究在推进器故障情况下四轴飞行器的故障容错控制方法显得尤为重要。

故障容错控制旨在使系统在部分部件发生故障时,仍能保持一定的性能或功能。对于四轴飞行器而言,单推进器故障容错控制的目标是在一个推进器失效后,通过重新配置剩余三个推进器的输出,补偿故障带来的推力失衡和力矩变化,从而维持飞行器的稳定姿态和位置,或至少实现受控降落。

滑模控制作为一种非线性控制策略,以其对模型不确定性、外部扰动和内部参数变化的强鲁棒性而著称。其核心思想是通过设计一个切换函数(滑模面),将系统的状态轨迹“强迫”地吸引到该滑模面上,并在滑模面上运动,从而使系统具有对不确定性和扰动不敏感的特性。滑模控制的这一特性使其成为处理四轴飞行器在发动机故障等非线性、存在不确定性场景下的有力工具。本文旨在深入探讨滑模控制在单推进器故障四轴飞行器中的应用潜力,并对其实现机理和控制效果进行理论分析。

2. 四轴飞行器动力学模型与单推进器故障影响分析

2.1 四轴飞行器动力学模型

假设四轴飞行器是一个刚体,且质心与几何中心重合。忽略空气动力学效应、电机动态和柔性结构的影响,四轴飞行器的位置和姿态动力学方程可以表示为:

四个电机的推力和力矩通常与电机的转速平方成正比:
Fi=cTωi2

四轴飞行器的总推力和力矩由四个电机的推力和反扭矩产生。通常,对角线上的电机(1和3,2和4)旋转方向相反,以抵消反扭矩。假设电机1和3逆时针旋转,电机2和4顺时针旋转。各轴的力矩表达式为:
τϕ=d(F2+F3−F1−F4)

2.2 单推进器故障影响分析


可以看出,电机1的失效不仅导致总推力减小,更重要的是改变了三个轴向的耦合力矩关系。特别是滚转轴和俯仰轴的力矩表达式不再对称,无法通过简单的调整其他电机的输出线性补偿。这种非对称的力矩分布是导致姿态失稳的关键因素。此外,由于总推力减小,飞行器将难以维持原有的高度,需要增加剩余电机的输出,进一步加剧了系统的非线性。

在单推进器故障情况下,四轴飞行器成为一个更复杂的非线性、欠驱动、且存在结构变化的系统。传统的控制方法难以有效地处理这种状态,需要引入更先进的控制策略。

3. 滑模控制原理与设计

滑模控制是一种基于变结构控制理论的非线性控制方法。其基本思想是将系统状态轨迹引导至预先定义的滑模面上,并通过高频切换的控制律使系统状态在滑模面上滑动,从而达到控制目标。滑模控制的优点在于对系统参数变化和外部扰动不敏感,具有很强的鲁棒性。

滑模控制的设计主要包括两个步骤:

    3.1 单推进器故障四轴飞行器的滑模控制律设计

    在单推进器故障情况下,四轴飞行器的控制目标是维持飞行器的姿态稳定和位置稳定。由于姿态动力学和位置动力学存在耦合,通常采用分层控制策略,即先进行姿态控制,再进行位置控制。在故障情况下,由于控制输入的减少(只有一个推进器失效,但四个推力输出仍是可调的,只是其中一个推力为0),姿态和位置控制的解耦变得更为困难,需要综合考虑。

    考虑到滑模控制的鲁棒性,可以针对单推进器故障后的四轴飞行器动力学模型,设计姿态和位置的滑模控制器。以下以姿态控制为例,说明滑模控制的设计过程。

    将滑模面定义代入趋近律:
    e¨η+Ce˙η=−Ksgn(sη)−ηsη

    例如,可以优先满足姿态力矩的控制,然后再根据剩余的控制能力调整总推力。或者,可以将期望的姿态力矩和总推力作为目标,构建一个优化问题,寻找满足电机推力约束的最优解。

    位置控制的滑模控制器设计与姿态控制类似,可以针对位置误差及其导数设计滑模面,并推导出相应的控制律。在单推进器故障情况下,位置控制的主要挑战在于总推力减小以及力矩控制与推力控制之间的耦合。需要协调姿态控制和位置控制,以实现整体的稳定。

    4. 故障容错控制策略与滑模控制的结合

    滑模控制本身是一种对不确定性和扰动具有鲁棒性的控制方法,但直接应用于单推进器故障系统时,还需要结合故障检测与诊断以及控制重构策略。

    4.1 故障检测与诊断

    在应用滑模控制进行故障容错之前,首先需要快速准确地检测到推进器故障的发生,并确定是哪个推进器失效。这可以通过监测每个电机的转速、电流或者与控制指令的偏差来实现。当某个电机的实际输出与期望输出显著偏离时,可以判定该电机发生故障。

    4.2 控制重构

    在故障诊断之后,需要根据故障信息重构控制律。对于单推进器故障,控制重构的核心在于将原有的四个控制输入(四个电机的期望推力)重新分配到剩余的三个正常工作的推进器上,以尽可能地补偿故障带来的影响。

    滑模控制与控制重构的结合体现在:

    • 故障发生前

      :系统运行在正常的滑模控制器下,控制律由四个电机的推力决定。

    • 故障发生后

      :故障诊断模块检测到故障,并通知控制系统。控制器根据故障信息,调整滑模控制律的参数或结构,并将期望的力矩和总推力通过故障容错分配算法分配到剩余的正常推进器上。

    实际应用中,为了简化问题,常常忽略偏航角力矩的精确控制(因为偏航角力矩对推力的贡献相对较小),而优先满足滚转角和俯仰角的控制。或者采用基于优先级的分配策略,例如优先满足姿态力矩,再满足总推力。

    5. 理论分析与稳定性证明

    在单推进器故障情况下,稳定性分析需要考虑故障后的系统动力学模型和控制律。由于故障导致系统的非线性增强和结构变化,严格的理论证明可能更加复杂。常用的方法包括:

    • 基于Lyapunov函数的稳定性证明

      :针对故障后的系统和控制律,构建合适的Lyapunov函数,证明其导数负定,从而证明系统的稳定性。这需要对故障后的动力学模型有充分的了解。

    • 输入-状态稳定性 (Input-to-State Stability, ISS) 分析

      :将未建模动态、外部扰动和控制分配误差视为输入,分析系统状态对这些输入的敏感性。滑模控制的鲁棒性可以体现在系统对这些输入的ISS特性上。

    在单推进器故障场景下,稳定性的主要挑战在于控制输入的限制以及力矩和推力控制的耦合。理论分析需要证明,即使在控制能力受限的情况下,滑模控制器仍能将系统状态拉回到稳定的滑模面上,并使系统在滑模面上稳定运行。这通常需要对滑模增益、边界层厚度以及控制分配算法的性能进行仔细的分析。

    6. 仿真分析与结果讨论

    为了验证滑模控制在单推进器故障四轴飞行器中的有效性,通常需要进行详细的仿真分析。仿真环境应尽可能地逼近真实情况,包括四轴飞行器的动力学模型、电机模型、传感器噪声以及外部扰动(如风)。

    仿真步骤可以包括:

    1. 建立精确的四轴飞行器动力学模型

      :考虑所有关键参数,包括质量、惯性矩阵、电机系数、质心位置等。

    2. 建模单推进器故障

      :例如,在某个仿真时刻将某个电机的推力输出固定为零。

    3. 设计滑模控制器

      :根据故障后的动力学模型,设计姿态和位置的滑模控制器,包括滑模面和控制律。

    4. 设计故障容错分配算法

      :实现将滑模控制器输出的期望力矩和总推力分配到剩余的正常推进器上的算法。

    5. 进行闭环仿真

      :将四轴飞行器模型、滑模控制器、故障模型和分配算法集成到仿真环境中。设置不同的故障发生时间和类型,以及不同的外部扰动。

    6. 分析仿真结果

      :重点关注飞行器的姿态误差、位置误差、角速度、控制输入(电机推力)以及滑模面的收敛情况。将滑模控制的性能与传统的PID控制进行对比,评估其在故障情况下的鲁棒性和稳定性。

    仿真结果应能展示:

    • 滑模控制能否在单推进器故障后有效地稳定飞行器的姿态。

    • 滑模控制能否在故障后维持飞行器的高度和水平位置。

    • 滑模控制对外部扰动的抑制能力。

    • 滑模控制是否存在明显的抖振现象,以及边界层处理的效果。

    • 控制分配算法的有效性,是否能将期望的控制输入合理地分配到可用的执行器上。

    通过仿真分析,可以评估滑模控制在单推进器故障四轴飞行器中的实际效果,并根据仿真结果对控制器参数进行调整和优化。

    7. 结论与展望

    滑模控制以其对模型不确定性和外部扰动的强鲁棒性,为解决四轴飞行器在单推进器故障等复杂非线性情况下的稳定控制问题提供了有力的工具。本文详细探讨了滑模控制在单推进器故障四轴飞行器中的应用机理,包括故障影响分析、滑模控制律设计、故障容错策略与滑模控制的结合以及理论稳定性分析。理论分析表明,通过合理设计滑模面和控制律,并结合故障诊断和控制重构,滑模控制能够有效地应对单推进器故障带来的挑战,实现对故障系统的稳定控制。潜在的仿真分析也将进一步验证滑模控制的有效性和优越性。

    然而,将滑模控制应用于实际四轴飞行器仍面临一些挑战:

    • 抖振问题

      :高频切换可能导致电机磨损和系统不稳定。虽然边界层方法可以缓解抖振,但会牺牲一定的鲁棒性。如何在鲁棒性和抖振之间进行权衡是重要的研究方向。

    • 模型精度

      :精确的动力学模型对于滑模控制器的设计至关重要。实际系统往往存在未建模动态和参数变化,需要进一步考虑自适应滑模控制等方法来增强对模型不确定性的适应能力。

    • 控制分配的复杂性

      :在单推进器故障情况下,控制分配是一个复杂的优化问题。如何设计高效且鲁棒的故障容错分配算法是实际应用的关键。

    • 实时计算

      :滑模控制涉及到符号函数和复杂的计算,对控制器的实时计算能力提出了要求。

    未来的研究方向可以包括:

    • 自适应滑模控制

      :结合自适应律,在线估计系统参数或不确定性,进一步提高控制器的鲁棒性。

    • 基于观测器的滑模控制

      :利用状态观测器估计系统状态,尤其是在传感器故障或噪声较大的情况下。

    • 有限时间收敛滑模控制

      :设计能够实现有限时间收敛的滑模控制器,从而更快地稳定系统。

    • 基于学习的滑模控制

      :结合机器学习方法,利用数据驱动的方式优化滑模控制器的参数或结构。

    • 更先进的故障诊断与容错控制一体化设计

      :将故障诊断和控制重构紧密结合,实现更智能和高效的故障容错控制。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 张慧.基于反步滑模算法的四旋翼无人机容错控制研究[D].东北农业大学,2021.

    [2] 陈海力.船舶动力定位非线性滑模控制[D].大连海事大学,2021.

    [3] 颜闽秀,井元伟.一类非线性系统的终端滑模分解控制[J].系统仿真学报, 2008(16):146-148.DOI:CNKI:SUN:XTFZ.0.2008-16-032.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值