【路径规划】RRT-路径规划与避障附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

路径规划作为机器人自主导航的核心技术之一,其研究与应用对于提升机器人的智能化水平至关重要。在复杂多变的环境中,机器人需要能够快速、准确地找到一条从起始点到目标点的无碰撞路径,同时满足一定的性能指标,例如最短路径、最平滑路径等。近年来,随着人工智能和计算能力的飞速发展,涌现出众多路径规划算法,其中快速随机树(Rapidly-exploring Random Tree, RRT)算法因其在处理高维空间和复杂环境中的高效性而受到广泛关注。本文将深入探讨RRT算法的基本原理、变种、优势以及在路径规划与避障中的应用。

一、RRT算法的基本原理

RRT算法是由Steven M. LaValle于1998年提出的一种基于采样的路径规划算法。其核心思想是通过在构型空间中随机采样,逐步扩展一棵从起始点开始的搜索树,直到这棵树触碰到目标区域。相比于传统的基于网格或势场的方法,RRT算法更适用于处理高维空间和非结构化环境,因为它无需事先对整个构型空间进行离散化或建模。

RRT算法的基本流程可以概括如下:

    RRT算法的强大之处在于其“快速探索”的特性。通过随机采样和向新方向扩展,RRT能够有效地探索未知的构型空间,从而在高维空间中快速找到一条可行的路径,避免了陷入局部最优。

    二、RRT算法的变种与改进

    虽然基本RRT算法原理简单且有效,但在实际应用中,仍然存在一些问题,例如搜索效率不高、生成的路径不一定最优等。为了解决这些问题,研究人员提出了多种RRT的变种和改进算法:

    1.  

    2. Bi-RRT (Bidirectional RRT): 双向RRT算法从起始点和目标点同时构建两棵搜索树。在每次迭代中,分别对两棵树进行扩展,并尝试将两棵树连接起来。当两棵树成功连接时,就找到了一条路径。Bi-RRT通常比单向RRT更快地找到路径,尤其是在目标区域较小的情况下。

    3. RRT-Connect: RRT-Connect是Bi-RRT的一种改进,它在每次扩展时,尝试将新生成的节点连接到另一棵树的最近节点。这种激进的连接策略能够更快地促使两棵树相遇,从而加快路径规划速度。

    4. Informed RRT* Informed RRT算法在RRT的基础上引入了“信息”的概念。一旦找到一条初步的路径,算法会利用这条路径创建一个椭圆形区域,后续的采样点只在椭圆形区域内生成。这样可以有效地聚焦搜索范围,加速收敛到最优路径。

    5. Lazy RRT: Lazy RRT算法推迟碰撞检测,只在生成路径后进行碰撞检测。如果路径存在碰撞,则回溯并重新规划。这种策略在碰撞检测计算量较大的情况下可以提高效率,但可能需要更多的回溯操作。

    除了上述主要的变种,还有许多其他的改进算法,例如通过采样策略的优化(如Gaussian sampling, obstacle-based sampling)、引入启发式信息、结合其他规划算法等,以进一步提高RRT算法的性能。

    三、RRT在路径规划与避障中的应用

    RRT算法因其强大的能力,在各种应用场景中都展现出巨大的潜力:

    1. 移动机器人导航: RRT算法广泛应用于地面移动机器人、无人机、水下机器人等的路径规划。在复杂的室内外环境中,机器人需要避开障碍物,找到通往目标的无碰撞路径。RRT算法能够有效地处理各种形状和分布的障碍物,为机器人提供安全可靠的导航。

    2. 机械臂运动规划: 机械臂的运动规划需要在高维的关节空间中进行。RRT算法能够有效地处理机械臂的关节限制、末端执行器位姿约束以及工作空间中的障碍物,规划出平滑且无碰撞的运动轨迹。

    3. 自动驾驶: 在自动驾驶领域,车辆需要在复杂的交通环境中进行路径规划和轨迹跟踪。RRT算法可以用于生成车辆的全局路径,并结合局部规划算法进行动态避障。

    4. 虚拟现实与游戏: 在虚拟现实和游戏环境中,RRT算法可以用于为虚拟角色或物体规划运动路径,实现智能化的行为。

    5. 其他领域: RRT算法还可以应用于分子构象搜索、蛋白质折叠模拟、机器人手术等领域,解决各种高维空间的搜索问题。

    在实际应用中,将RRT算法与避障技术相结合至关重要。避障通常通过碰撞检测模块实现。碰撞检测负责判断机器人当前状态或规划的路径是否与环境中的障碍物发生接触。常见的碰撞检测方法包括:

    • 几何碰撞检测:

       基于物体的几何形状进行判断,例如包围盒、凸包、OOBB等。

    • 基于模型的碰撞检测:

       利用机器人和环境的3D模型进行精确的碰撞检测。

    • 基于传感器的避障:

       利用激光雷达、摄像头、超声波传感器等获取环境信息,实时检测障碍物并调整路径。

    将RRT算法与有效的碰撞检测机制相结合,可以确保生成的路径是安全可靠的,避免机器人与障碍物发生碰撞。

    四、RRT算法的优势与挑战

    优势:

    • 处理高维空间能力强:

       RRT算法基于采样,对维度的依赖性较低,适用于高维空间的路径规划。

    • 无需环境模型的先验知识:

       RRT算法无需事先建立精确的环境模型,能够在未知或部分未知的环境中进行探索。

    • 实现简单:

       基本RRT算法的原理相对简单,易于实现。

    • 能够快速找到可行路径:

       RRT算法能够快速地探索空间,找到一条可行的路径。

    挑战:

    • 路径非最优:

       基本RRT算法生成的路径通常不是最优的,需要通过RRT*等变种进行改进。

    • 对采样策略敏感:

       采样策略的选择会影响算法的效率和性能。

    • 在高障碍物密度环境下效率下降:

       在障碍物密集的环境中,采样点容易落入障碍物区域,导致效率下降。

    • 难以处理差分约束和非完整约束:

       基本RRT算法难以直接处理机器人的运动学和动力学约束,需要结合其他技术。

    • 生成的路径可能不平滑:

       RRT生成的路径通常由直线段连接而成,可能不够平滑,需要进行路径后处理。

    五、结论与展望

    RRT算法作为一种基于采样的路径规划方法,在处理高维空间和复杂环境中的路径规划与避障问题上展现出显著的优势。其快速探索和无需先验环境模型的特性使其成为机器人自主导航领域的有力工具。通过不断发展和改进,RRT算法已经涌现出多种变种,在保证规划效率的同时,提高了路径的质量。

    然而,RRT算法仍然面临一些挑战,例如路径最优性、对采样策略的依赖以及对复杂运动约束的处理等。未来的研究方向可以集中在:

    • 更智能的采样策略:

       发展能够更好地利用环境信息和任务需求的采样策略,提高搜索效率。

    • 结合学习的方法:

       利用机器学习技术优化采样策略、改进碰撞检测或者预测最优路径的区域。

    • 处理复杂约束:

       发展能够有效处理机器人运动学、动力学和差分约束的RRT变种。

    • 实时性与鲁棒性:

       进一步提高RRT算法在动态环境下的实时性和对传感器噪声的鲁棒性。

    • 与其他规划算法的融合:

       将RRT算法与其他基于搜索、基于优化的规划算法相结合,发挥各自的优势。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 代彦辉,梁艳阳,谢钢.基于RRT搜索算法的六自由度机械臂避障路径规划[J].自动化技术与应用, 2012(10):7.DOI:CNKI:SUN:ZDHJ.0.2012-10-009.

    [2] 王道威,朱明富,刘慧.动态步长的RRT路径规划算法[J].计算机技术与发展, 2016, 26(3):4.DOI:10.3969/j.issn.1673-629X.2016.03.025.

    [3] 冯来春,梁华为,杜明博,等.基于A*引导域的RRT智能车辆路径规划算法[J].计算机系统应用, 2017, 26(8):7.DOI:10.15888/j.cnki.csa.006023.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP 

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值