【CDBS】凹边界的修改形状特征描述:应用于皮肤病变分类附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

皮肤病变,作为临床医学中的常见问题,其准确分类对于早期诊断、有效治疗至关重要。皮肤病变通常呈现出多样的形态特征,其中边界特征作为病灶的重要组成部分,往往蕴含着丰富的诊断信息。传统上,皮肤病变的边界评估依赖于医生经验和肉眼观察,存在主观性强、精度有限的缺点。随着计算机辅助诊断技术(CAD)的快速发展,基于图像的皮肤病变分析成为研究热点。在众多图像特征中,形状特征,尤其是边界形状特征,对于区分良恶性病变具有显著价值。然而,简单的几何形状描述,如周长、面积比等,难以充分捕捉病变边界的复杂性和细微变化。特别是对于那些具有“凹陷”或“侵蚀”特征的恶性病变,传统的边界描述往往显得力不从心。因此,本文提出了一种基于【CDBS】(Concave Detection and Boundary Subdivision)的修改形状特征描述方法,旨在更精确地捕捉皮肤病变边界的凹陷特征,并探讨其在皮肤病变分类中的应用潜力。

首先,有必要理解皮肤病变边界的凹陷特征在临床上的意义。恶性黑色素瘤等侵袭性皮肤癌往往表现出不规则的边界,其中包含了由于癌细胞向周围组织浸润而形成的凹陷或切迹。这些凹陷不仅反映了肿瘤的侵袭性,也是区别于许多良性病变(如色素痣)的重要形态学指标。传统的边界分析方法,如采用光滑曲线拟合边界,可能会忽略或平滑掉这些细微的凹陷,从而损失关键的诊断信息。因此,一种能够灵敏检测并量化这些凹陷特征的方法是至关重要的。

本文提出的【CDBS】方法,核心在于两个阶段:凹陷检测(Concave Detection)和边界细分(Boundary Subdivision)。凹陷检测阶段旨在识别并定位皮肤病变边界上的凹陷区域。这可以通过多种图像处理技术实现。一种常用的方法是利用边界的曲率分析。边界上的凹陷通常对应于曲率的局部极大值或明显的负曲率区域。通过计算边界上每一点的曲率,并设定合适的阈值,可以初步识别出潜在的凹陷点或区域。另一种方法是基于凸包(Convex Hull)与边界的差异分析。病变的凸包代表了其外部轮廓的最简单的凸多边形。病变边界与其凸包之间的差异部分,尤其是那些位于凸包内部但属于病变边界的区域,往往对应于凹陷。通过计算边界点与凸包边界的距离,并分析距离的分布,可以有效地检测出凹陷区域。此外,基于形态学操作,如开运算和闭运算的组合,也可以用来平滑边界并突出凹陷。

一旦识别出凹陷区域,【CDBS】方法的第二阶段——边界细分,则对整个边界进行有针对性的处理。传统的边界分析通常将整个边界视为一个整体进行描述。然而,将边界划分为不同的区域,并分别计算其形状特征,可以更精细地刻画边界的复杂性。在【CDBS】框架下,边界可以被细分为凸区域、凹陷区域以及可能存在的平坦区域。这种细分可以基于凹陷检测的结果来实现。例如,将边界上被检测为凹陷的连续点集划分为凹陷区域,而其余部分则根据其局部形状特征进一步划分为凸区域或平坦区域。

在完成边界细分后,针对每个细分区域,我们可以计算一系列修改后的形状特征。与传统的全局形状特征不同,这些特征将更专注于描述局部形状特征,特别是凹陷区域的形态。例如,对于检测到的每一个凹陷区域,我们可以计算其深度、宽度、周长、面积等。深度可以定义为凹陷区域最深点到连接凹陷两个端点的弦的距离。宽度则可以是凹陷两个端点之间的弦长。通过计算这些局部特征,我们可以量化每个凹陷的大小和程度。此外,我们还可以引入一些更复杂的描述符,例如基于傅里叶描述子、小波描述子或者形状上下文等方法,分别应用于每个细分区域,从而捕捉更丰富的局部形状信息。

将这些局部形状特征与传统的全局形状特征(如病变的面积、周长、长轴与短轴之比等)相结合,形成一个更全面的特征向量。例如,我们可以计算病变边界上凹陷区域的总面积占整个病变面积的比例,或者计算凹陷区域的数量、平均深度、平均宽度等。这些指标可以直接反映病变边界的侵袭性和不规则性。

将基于【CDBS】提取的修改形状特征应用于皮肤病变分类,可以采用各种机器学习算法。常见的分类器包括支持向量机(SVM)、随机森林、神经网络等。通过将提取的特征向量输入到训练好的分类器中,可以对输入的皮肤病变图像进行分类,判断其属于良性还是恶性。在训练过程中,需要一个标注好的皮肤病变图像数据集,其中包含不同类型病变的样本以及其对应的类别标签。通过优化分类模型的参数,使其能够在训练数据上达到较高的分类精度,并期望在未见过的测试数据上也能保持良好的泛化能力。

与传统的基于全局形状特征的方法相比,【CDBS】方法具有明显的优势。首先,它能够更敏感地捕捉到恶性病变所特有的凹陷特征,从而提高了对侵袭性病变的检测能力。其次,通过对边界进行细分并计算局部特征,可以更细致地描述边界的复杂性,避免了将整个复杂边界简单地均质化。这使得特征向量能够更好地反映病变边界的多样性和局部变化。最后,这种方法可以与其他特征(如颜色特征、纹理特征等)相结合,进一步提高分类的准确性。

然而,【CDBS】方法也面临一些挑战。凹陷的定义和检测阈值的设定是关键问题。不同的病变类型和图像质量可能会影响凹陷检测的准确性。需要对不同类型的皮肤病变进行深入研究,以确定合适的凹陷检测策略和参数。此外,边界细分的策略也需要进一步优化,以确保细分区域能够有效地捕捉到有意义的局部形状信息。计算复杂性也是一个需要考虑的因素,尤其是当采用更复杂的局部形状描述符时。

为了验证【CDBS】方法的有效性,需要进行大量的实验评估。在标准化的皮肤病变图像数据集上,比较基于【CDBS】特征的分类方法与传统方法在分类精度、灵敏度、特异性等指标上的表现。同时,分析不同参数设置对凹陷检测和分类结果的影响,并对不同类型的凹陷特征进行深入研究,以探索其在区分不同类型皮肤病变中的作用。例如,某些恶性病变可能表现为多个小的凹陷,而另一些则可能表现为少数几个大的凹陷。这些差异可能有助于进一步细化恶性病变的分类。

总而言之,皮肤病变边界的凹陷特征是区分良恶性病变的重要形态学标志。【CDBS】方法通过结合凹陷检测和边界细分,提出了一种更精确地描述皮肤病变凹陷边界的修改形状特征提取方法。这种方法能够更有效地捕捉恶性病变的侵袭性特征,为计算机辅助诊断提供了更精细的边界描述信息。通过将这些修改形状特征与其他图像特征相结合,并采用合适的机器学习算法,有望显著提高皮肤病变分类的准确性和可靠性。未来的研究可以进一步优化凹陷检测和边界细分策略,探索更有效的局部形状描述符,并进行更广泛的临床验证,从而推动【CDBS】方法在皮肤病变自动化分析和诊断中的实际应用。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 孟昭福,李婷,杨淑英,等.BS-18两性修饰膨润土对Cd(Ⅱ)的吸附[J].土壤学报, 2013, 50(6):5.DOI:10.11766/trxb201303150122.

[2] 王爱玲,叶明生,邓秋香.MATLAB R2007图像处理技术与应用[M].电子工业出版社,2008.

[3] 张林,范春利,孙丰瑞,等.基于APDL的管道内壁边界识别算法[J].红外与激光工程, 2015.DOI:CNKI:SUN:HWYJ.0.2015-05-016.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值