语义地图和几何地图

语义地图和几何地图的区分

几何地图

几何图,2D,纯以点、线、多边形三种元素构成的图层,是道路和建筑位置、边界及方向的一个抽象,而存储时只存储点的坐标,常见的便是经纬度坐标。多点一起存储便是折线,闭合折线是多边形。

语义地图

语义图不是一个单独的图层,语义图能够以以上任何一种地图作为载体,将语义映射到其中。
举个例子,红绿灯这个物体作为一个语义,
(1)在几何图上,表示为一个点,有经纬度;
(2)在矢量图上,与其对应的道路的可行进方向一致;
(3)在路网图上,表示为一个带标签的点或遵守画红绿灯规范画法的多边形;
(4)在点云图或特征图上,表示为一小片点云,这些点是红绿灯表面结构被传感器扫描到的点,记录其三维坐标;
(5)在动态图上,表示为一个遵守此路口交通灯计时规范,与真实交通灯同步,一定时间后改变颜色表示是否可行驶的多边形;
(6)在语义未映射前,在图像上,是一片被分割为红绿灯的像素。
其实上述各种语义图,均属于概率图范畴,是世界的一个简化概率模型,为无人驾驶提供先验知识。语义可以从图像深度学习中获得,通过分类、检测、分割等模型,但其实语义还可以由人的知识定义,只要这种定义和表示够普适和简洁。
不过真正开车时,还需要看看周围情况,得出后验,临场做一些应对突发事件的决定,地图和感知的这种关系,好比考驾照时笔试和车考吧,而考驾照,不就是在学开车吗?我们的车也是在学开车啊!!!

### 语义地图的概念及其在IT中的应用 #### 定义与特点 语义地图是一种高级的地图表示形式,它不仅记录几何结构信息,还包含了环境中物体的功能属性类别标签。这种增强型的地图能够帮助机器人更好地理解解释周围环境,使得导航更加智能化高效化[^1]。 #### 实现方式 构建语义地图通常依赖于计算机视觉技术机器学习算法来处理来自传感器的数据流。具体来说: - **多模态感知融合**:通过摄像头、激光雷达等多种类型的传感器收集数据,并利用深度神经网络提取特征并分类对象。 - **三维重建与标注**:基于点云或其他原始测量值建立精确的3D模型,在此基础上附加语义标签以描述各个组成部分的意义。 - **持续更新机制**:为了适应动态变化的真实世界情况,系统需要具备在线增量式学习的能力,即不断接收新观测结果并对已有知识库作出调整。 ```python import numpy as np from sklearn.cluster import DBSCAN from scipy.spatial.distance import cdist def semantic_mapping(point_cloud, labels): """ 对给定的带标签点云执行聚类操作, 并返回带有语义信息的结果 参数: point_cloud (numpy.ndarray): N*3 的数组代表空间坐标 labels (list[str]): 长度为N的列表存储对应位置处的对象名称 返回: dict: 键为唯一ID字符串;值是一个元组,其中第一个元素是指向该簇中心坐标的指针, 第二个元素是关联于此区域内的所有实例名构成集合. """ clustering = DBSCAN(eps=0.5, min_samples=10).fit(point_cloud) unique_labels = set(clustering.labels_) result = {} for label in unique_labels: mask = clustering.labels_ == label cluster_center = np.mean(point_cloud[mask], axis=0) instances_within_cluster = {l for l, m in zip(labels, mask) if m} key = f'cluster_{label}' result[key] = (cluster_center.tolist(), instances_within_cluster) return result ``` #### 应用场景 语义地图广泛应用于自动驾驶汽车领域,特别是在城市复杂交通环境下提供更精准可靠的路径规划服务。此外,在室内服务机器人方面也有着重要价值,比如清洁机器人可以根据房间布局自动避开障碍物完成清扫工作。对于无人机而言,则有助于提高其自主飞行的安全性效率[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值