上篇博文中(数值积分初步介绍)已经初步介绍了数值积分,下面介绍一种求解数值积分的方法——插值型求积公式。
插值型求积公式就是利用拉格朗日插值法对被积函数进行插值近似,求其插值函数来代替被积函数进行求解积分。
这需要首先了解拉格朗日插值法,专题博文在此:拉格朗日插值法
下面正式介绍插值型求积公式。
————————————————————————————————————————————————————
插值型求积公式的基本思想:
简单说来,插值法的基本思想,就是用积分区间中的n+1个相异的插值节点来构造一个n次的插值多项式来近似代替被积函数,构造求积公式。
此公式同样也是机械求积公式,稍后解释。
————————————————————————————————————————————————————
n次拉格朗日插值多项式介绍:
————————————————————————————————————————————————————
正是给出插值型求积公式: