数值积分之插值型求积公式

上篇博文中(数值积分初步介绍)已经初步介绍了数值积分,下面介绍一种求解数值积分的方法——插值型求积公式。

插值型求积公式就是利用拉格朗日插值法对被积函数进行插值近似,求其插值函数来代替被积函数进行求解积分。

这需要首先了解拉格朗日插值法,专题博文在此:拉格朗日插值法

下面正式介绍插值型求积公式。

————————————————————————————————————————————————————

插值型求积公式的基本思想:

简单说来,插值法的基本思想,就是用积分区间中的n+1个相异的插值节点来构造一个n次的插值多项式来近似代替被积函数,构造求积公式。

此公式同样也是机械求积公式,稍后解释。

————————————————————————————————————————————————————

n次拉格朗日插值多项式介绍:


————————————————————————————————————————————————————

正是给出插值型求积公式:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李锐博恩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值