关于迁移学习的high level理解

文章原址:
https://www.zybuluo.com/liuhui0803/note/644770

是以上迁移学习是为了解决,在训练每个案例是缺少大量的数据,但是同类的一些问题已经有通过大量的数据训练好模型。那么借助于这个模型构建一个新的模型。从这个角度说,更像是通过数据得到了一个learning system,非常有效的避免了过拟合;

具体的操作是,从可用的模型中找到输出结果可用的层。用这些层的输出结果作为输入,构建一个参数数量和规模都更加小的网络模型;这样可以学习到更加底层,通用化的规则,能够看到不同类型的数据,而且通过原有的模型,已经很好的掌握了数据背后的“规则”

但是对于文中的迁移学习训练所需的参数数量计算方式如下:

参数的数量 = [规模(输入) + 1] * [规模(输出) + 1]
= [2048+1]*[1+1]~ 4098 个参数
并不是特别的理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值