常用的不等式总结

常用的不等式:
三角不等式类三角不等式类
由sin(x)<x<tan(x),x1∈(0,π2)由sin(x)<x<tan(x),x1 \in (0,\frac {\pi}{2})sin(x)<x<tan(x),x1(0,2π)
由xx+1<ln(1+x)<x,x1∈(−1,∞)由\frac{x}{x+1}<ln(1+x)<x,x1 \in (-1,\infty)x+1x<ln(1+x)<x,x1(1,)


例:例::
x1∈(0,π),xn+1=sin(xn)x1 \in (0,\pi),x_{n+1}=sin(x_{n})x1(0,π),xn+1=sin(xn)
由sin(x)<x<tan(x),x1∈(0,π2),单调 由 sin(x)<x<tan(x),x1 \in (0,\frac {\pi}{2}),单调sin(x)<x<tan(x),x1(0,2π)
例:例::
x1=2,xn+1=2+1xnx1 =2,x_{n+1}=2+\frac{1}{x_{n}}x1=2,xn+1=2+xn1

挺难找到的一本非常好的书!!讲述不等式的专著,可谓包罗万象。 此乃清晰版! ----------------------- 常用不等式. 第三版 匡继昌著山东科学技术出版社 2004 年1 月出版 110 万字定价:人民币 68 元 ISBN7-5331-3618-7 内容简介   本书第三版是对1993 年第二版的内容全面更新和改写,在内容的广度和深度方面都远远超过了第二版,充分反映了20 世纪以来,特别是20 世纪90 年代以来不等式理论和方法的最新进展。   全书共分17 章,包含了美国数学评论(MR)2000 主题分类中所有关于不等式论题的40 个三级分类项目,还包括了国内外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用不等式;所收录的不等式由第二版的3600 个增加到5 千多个。   第三版还总结了不等式常用证法50 种,提出了152 个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。   徐利治教授在2004 年第3 期“数学研究与评论”为本书第3 版发表书评,指出本书至少有5 点特色,堪称现今海内外独一无二的不等式巨著。   本书1989 年第一版35 万字,先后在本校、中南地区和全国获奖。1991年被中国数学会评为全国七本优秀数学传播图书之一(见“中国数学会通讯”,1991 年第2 期)。   美国“数学评论”(MR91c:26001)指出这是“一本很有价值和受欢迎的数学不等式新文献”。   1993 年第二版65 万字,美国“数学评论”为第二版再次发表长篇评论(MR95g:26001),指出本书极有价值,并向全世界的研究人员、数学教师、工程师和各国的数学、科学、工程技术图书馆推荐本书。   Fan Ky、徐利治等国内外著名专家指出这是一本有久远影响的巨著。SCI 和国内外著名杂志对本书的引用率越来越高,并发行到欧美、港台等地。
<think>我们正在处理一个关于三元不等式解法的问题。用户意图明确,需要数学相关的三元不等式解法。由于问题比较抽象,我们将先搜索关于三元不等式的基本解法,常见类型(如三元均值不等式),以及一些典型例题。注意:三元不等式可能指代几种情况,比如三元均值不等式(AM-GM)、三个变量的不等式组求解,或者含有三个变量的不等式证明等。我们将重点放在最常用的领域:算术-几何平均不等式(AM-GM)以及一些常见的解题技巧。经过搜索,我们可能会得到以下信息:1.三元均值不等式(AM-GM):对于非负实数a,b,c,有$\frac{a+b+c}{3}\geqslant\sqrt[3]{abc}$,当且仅当a=b=c时取等号。2.其他三元不等式形式:例如柯西不等式(三维形式)、排序不等式等,它们都可以推广到三个变量。3.解法技巧:包括配方法、利用基本不等式、变量代换、利用函数的单调性等。根据这些信息,我们将组织答案,注意按照要求分步骤(方法)描述,每个步骤换行,不出现第一人称和步骤词汇(如首先、然后)。特别提醒:在回答中如果出现数学公式,必须使用$...$或$$...$$;如果出现代码,则按照代码块格式要求。最后,根据我们的回答,生成至少三个相关问题,以“§§相关问题§§:”开头,然后编号列出。注意:由于需要整合搜索内容,我们将直接给出总结性的回答,但不会在末尾集中引用。现在开始整理答案:</think> ### 三元不等式解法概述 三元不等式指涉及三个变量的不等式问题,常见解法如下: #### 方法一:利用基本不等式 算术-几何均值不等式(AM-GM)是核心工具: $$ \frac{a+b+c}{3} \geq \sqrt[3]{abc} \quad (a,b,c \geq 0) $$ **应用步骤**: 1. 将目标式通过代换转化为和或积形式 2. 拆分变量为对称结构 3. 验证等号成立条件(当且仅当$a=b=c$) **示例**:证明$a^3+b^3+c^3 \geq 3abc$ #### 方法二:变量代换法 通过等量代换简化问题,常见技巧: - 令$t=\frac{a+b}{2}$,$p=ab$或$x+y+z=k$ - 对轮换对称式引入$a+b+c=s$,$ab+bc+ca=q$ - 利用全等代换(如$a=x/y, b=y/z, c=z/x$) #### 方法三:约束条件优化 针对含约束条件的问题(如$a+b+c=1$): 1. 利用拉格朗日乘数法求极值: 目标函数$f(a,b,c)$在约束$g(a,b,c)=0$下求导 ```python # 拉格朗日函数示例 from sympy import symbols, diff a,b,c,λ = symbols('a b c λ') f = a*b + b*c + c*a g = a + b + c - 1 L = f + λ * g # 对每个变量和λ求偏导 eq1 = diff(L, a) eq2 = diff(L, b) eq3 = diff(L, c) eq4 = diff(L, λ) ``` 2. 结合柯西不等式: $$ (a^2 + b^2 + c^2)(x^2 + y^2 + z^2) \geq (ax+by+cz)^2 $$ #### 方法四:分析法与构造法 - 作差比较:$f(a,b,c) - g(a,b,c)$配方为平方和 - 构造函数$f(t) = (t-a)(t-b)(t-c)$利用三次函数性质 - 利用权方和不等式: $$ \frac{x_1^2}{y_1} + \frac{x_2^2}{y_2} + \frac{x_3^2}{y_3} \geq \frac{(x_1+x_2+x_3)^2}{y_1+y_2+y_3} $$ > 关键提示:优先识别不等式对称性,利用代换统一变量形式;验证等号成立条件可反向指导解法路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值