Zero-shot Learning零样本学习 论文阅读(二)——An embarrassingly simple approach to zero-shot learning

Zero-shot Learning零样本学习 论文阅读(二)——An embarrassingly simple approach to zero-shot learning


这篇论文提出了一种新的zero-shot learning方法“Embarrassingly simple Zero-Shot Learning”,后来被简写作EsZSL。之所以叫做“embarrassingly simple”,是因为这种新方法只需要一行代码就可以实现,而且在zero-shot learning的几个标准数据集上的表现要优于当时最先进的方法。

ESZSL算法概况

背景

在本篇论文之前zero-shot learning相关的文章更多关注点是attribute learning,从训练实例中提取标签属性,直至《Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer》首次定义了Zero-shot learning并且提出了DAP、IAP,尽管DAP这种方法在一些方面得到应用和进一步研究,但是其弊端也比较明显,主要体现在两方面,一方面是他无法对输出的预测给出可靠性度量,二是算法做出了一些过强的假设,尤其是“各属性之间条件独立”,比如“是否生活在陆地”“是否生活在农场”这两个属性显然不是互相独立的。

前提

假设一共有z个类,其中每个类对应于属性空间中的a维属性向量,称为某个类的signature;集合的所有类用矩阵表示就是属性空间 S ∈ [ 0 , 1 ] a × z S \in [ 0,1 ] ^{a\times z} S[0,1]a×z;有m个实例,维度为d维,写成矩阵形式 X ∈ R d × m X \in R^{d\times m} XRd×m,实例的标签 Y = { − 1 , 1 } m × z Y=\{-1,1\}^{m\times z} Y={ 1,1}m×z.

思路

在实例空间X和和标签空间Y中间添加一个属性空间,并且通过一个新的映射 V V V连接属性空间和特征空间,最后建立损失函数.

算法原理

模型

从一个一般的线性分类器的原理开始,以岭回归为例,其优化过程就是:
m i n w L ( X T W , Y ) + Ω ( W ) min_wL(X^TW,Y)+\Omega(W) minwL(XTW,Y)+Ω(W)
其中 L L L为损失函数, Ω \Omega Ω为正则化项.
为了实现zero-shot learning,中间添加一个属性空间 S S S,通过映射 V V V连接属性空间 S S S和特征空间 X X X,即
W = V S V ∈ R d × a W=V S \quad V \in R^{d \times a} W=VSVRd×a
那么上式就变为
min ⁡ V L ( X ⊤ V S , Y ) + Ω ( V ) \min _{V} L\left(X^{\top} V S, Y\right)+\Omega(V) VminL(XVS,Y)+Ω(V)
通过学习得到参数 V V V后,输入新的 x x x S ∗ S^* S,就可以根据 a r g m a x i x T V S ⋅ , i ∗ argmax_i\quad x^TVS^*_{\cdot ,i} argmaxixTVS,i确定预测的类别。

求解

上面得到的式子
min ⁡ V L ( X ⊤ V S , Y ) + Ω ( V ) \min _{V} L\left(X^{\top} V S, Y\right)+\Omega(V) VminL(XVS,Y)+Ω(V)
由两部分组成,一部分是损失函数 L L L,另一部分是正则化 Ω \Omega Ω.

损失函数 L L L

损失函数 L L L论文中直接定义为Frobenius范数的形式: L ( P , Y ) = ∥ P − Y ∥ F r o 2 L(P, Y)=\|P-Y\|_{F r o}^{2} L(P,Y)=PYFro2

正则化项 Ω \Omega Ω

对于正则化项的选择,作者有两点考虑:

  1. 应该包含对于 V S VS V
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
零样本学习是一种重要的机器学习方法,用于处理那些没有被训练过的类别。一种尴尬地简单的零样本学习方法是使用属性向量来表示类别,而不是直接从训练数据中学习类别之间的关系。属性向量是一个描述类别特征的向量,可以用来衡量一个物体或概念的属性。通过使用属性向量,我们可以将类别表示为在属性空间中的点,进而进行零样本学习。这种方法的好处是可以在没有训练数据的情况下,根据已知的属性向量来推断新类别的特征。 具体而言,我们可以使用属性向量来表示图像的类别。例如,在处理动物分类问题时,我们可以用一个包含了“有四条腿”、“毛茸茸”等属性的向量来描述不同动物的特征。然后,我们可以将这些属性向量应用到零样本学习中,通过计算新图像与不同类别属性向量之间的相似度来判断图像所属的类别。这种方法的优势在于不需要额外的训练数据,只需从属性向量中提取特征并进行简单的计算即可完成零样本学习。 尽管这种方法可能显得太过简单,但它却可以在一定程度上解决零样本学习的问题。当我们面临没有训练数据的新类别时,使用属性向量来进行零样本学习是一种简单而有效的方法。当然,这种方法也有一些局限性,比如需要准确的属性向量和属性空间的定义,但它无疑为零样本学习提供了一种简单而实用的解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值