卷积神经网络的FPGA硬件加速——QMJ

本文介绍了通过FPGA实现卷积神经网络(CNN)的硬件加速,采用脉动阵列结构设计,详细阐述了PE单元的工作原理、数据流动过程以及实验结果分析。实验表明,在Modelsim仿真中,全部卷积过程只需约90次脉冲,预计在50MHz时钟频率的FPGA上,所需时间仅为1.8us。
摘要由CSDN通过智能技术生成

一、本次实验目的:

1)学习卷积神经网络;

2)FPGA中实现卷积运算。

二、脉动阵列结构设计

   PE(处理单元)的内部结构设计如图1所示,PE完成乘加运算得到的结果保存于寄存器中,其中IN和W表示1个字节(8bit)的输入和权重数据传递到PE。

在这里插入图片描述

图1 PE结构

  图2中,W、IN和OUT表示阵列的输入和输出,脉动阵列一行4个PE单元组成一组。

  脉动阵列PE得到的结果传递到out1,out2,out3的步骤:

  第一步:PE单元完成4次乘加运算;

  第二步:将一组PE得到的结果,从左到右依次传递给out1[0:7],out1[8:15],out1[16:23],out1[24:31];

  第三步:PE的寄存器进行清零,再开始执行第一步。
在这里插入图片描述

图2 阵列结构

三、脉动阵列的数据流动

  本次卷积计算过程中,输入矩阵选用的是5*5的矩阵数据&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值