三维重建系列 COLMAP: Structure-from-Motion

本文详细介绍了三维重建的经典方法,重点解析了COLMAP的Structure-from-Motion(SFM)流程,包括检索匹配、增量重建、BA优化和冗余视角删除等关键步骤,探讨了如何实现鲁棒高效的三维重建。
摘要由CSDN通过智能技术生成

四种经典的三维重建技术Pipeline。分别为:

1)传统方法(COLMAP)

2)深度学习方法(COLMAP + MVSNet)

3)传统方法(COLMAP + OpenMVS)

4)深度学习方法(COLMAP + R-MVSNet)

SFM 基本套路回顾

检索匹配

输入:一系列图片;输出:经过几何校验后的图像匹配关系。

为了得到尽可能准确的匹配关系,该步骤中涉及特征提取,匹配以及几何校验。

  • 特征匹配:可以是任何一种特异性较强的特征,如SIFT(COLMAP默认用SIFT),主要为后续的特征匹配服务;

  • 匹配阶段,将输入的图像两两之间进行匹配(可以发现&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋水 墨色

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值