最新版YOLOv12安装秘籍:让目标检测变得前所未有的简单(附与YOLOv8版本对比)

欢迎来到目标检测的新纪元!在实时对象识别领域,YOLO系列一直是革命性的存在,而最新版YOLOv12更是将这一技术推向了新的高度。想象一下,只需眨眼间,你的系统就能精准地识别并分类视频流中的每一个物体——无论是繁忙街道上的行人还是高速公路上飞驰的汽车。YOLOv12凭借其创新的区域注意力机制和优化的网络架构,不仅提升了检测精度,还显著加快了处理速度,使得实时应用更加流畅高效。无论你是致力于智能监控、自动驾驶,还是任何需要快速准确视觉分析的项目,本文将带你一步步揭开YOLOv12的神秘面纱,轻松完成安装配置,开启你的智能视觉之旅。准备好迎接前所未有的简单与强大了吗?

一、安装YOLOv12并配置环境

首先访问官网YOLOv12可以看到官网对YOLOv12的介绍和更新(挖个坑,后期我会更新更新的内容)

首先进入github官网下载YOLOv12,目前YOLOv12还是集成在YOLOv11里面,使用的时候只是更改网络文件和模型
注意:此处在使用时最好使用梯子

git clone https://github.com/ultralytics/ultralytics.git
cd ultralytics-main

我们在配置YOLOv12环境时最好使用conda虚拟环境,可以在CSDN上寻找conda的安装过程。

①我们先创建环境

conda create -n yolov12 python==3.11

点击y继续安装
②安装完成后进入环境,安装所需包

conda activate yolov12 
pip install ultralytics (如果报错pip不是内部指令可以尝试将pip换成pip3)

③CUDA版本查看
注意:此处为使用GPU进行训练时的操作,使用cpu版本可以直接跳到下一步
我们可以先使用nvidia-smi,查看自己的cuda版本 (如果不是内部指令可以在CSDN查找cuda安装教程)
在这里插入图片描述
④pytorch安装
前往pytorch官网
在官网里面找到适配自己的版本,我此处以v2.2.1版本为例,红框里面的版本有多种,第一个是linux only 为linux专用,windows可以使用第二个第三个,具体使用哪个要看自己的cuda版本,我是12.6,11.8和12.1版本都可以使用 最好是按照低于自己cuda版本的版本,如果自身版本过低,可以继续下拉寻找低版本的pytorch,CPU only 为cpu使用版本,适合没有显卡的用户使用。使用哪个版本直接复制下面那一行指令就行。
注意:由于是外网网站,下载很慢,可以使用梯子,或者在CSDN查找PIP换国内源
在这里插入图片描述
⑤查看包版本
下载完成后,我们可以查看我们conda虚拟环境里各个包的版本

conda list

在这里插入图片描述
我们主要查看torch的版本,如果带+cuxxx就是gpu版本没有就是cpu版本

⑥下载yolov12模型

进入官网
找到这一栏,点击蓝字下载对应模型,此处推荐YOLO12s 此处也需要梯子
在这里插入图片描述
⑦测试是否成功
此命令要在你下载的YOLOv12文件夹ultralytics-main内运行

无显卡驱动
yolo predict model=yolo12s.pt source='ultralytics/assets/bus.jpg' device=cpu

有显卡驱动(看扩展的部分,安装gpu版本torch才能运行)
yolo predict model=yolo12s.pt source='ultralytics/assets/bus.jpg' device=0

在这里插入图片描述
出现上图即为成功,结果保存在了红框内的文件夹

二、训练

①我们首先需要一个数据集

  • data
    -images
    -train
    -val
    -labels
    -tramin
    -val

我一般是这么分训练文件,images是图片,labels是txt文件
②创建训练文件夹
然后我们在ultralytics-main中创建一个data文件夹在data文件夹里创建一个data.yaml文件。
将下载的数据集也放在这个文件夹内

train : .\train\images\train	#训练数据集
val : .\train\images\val		#测试数据集
nc: 1								#names的数量
names : ["csm"] 		#训练的标签名

③训练命令
CLI命令(命令行指令)

#CPU训练
yolo train data=data/data.yaml model=yolo12s.pt epochs=300 imgsz=640 batch=8 workers=2 device='cpu'

#GPU训练
yolo train data=data/data.yaml model=yolo12s.pt epochs=300 imgsz=640 batch=8 workers=2 device=0

data:训练文件
model:模型文件
epochs:训练轮数
imgsz:训练图片尺寸
batch:一次放入图片的数量
workers:线程数量
device:训练设备(显卡默认0,多卡可以使用0,1,2…)

warning不用管
在这里插入图片描述
出现上图即为成功,红框为训练文件保存地址

③python文件运行

import warnings

warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO(r'.\ultralytics\cfg\models\12\yolo12.yaml')

    model.load(r'.\ultralytics-main\yolo12s.pt')

    model.train(data=r'.\data\data.yaml',
                epochs=300,
                batch=48,
                workers=8,
                device=0,

                )

三、遇到问题

①numpy包版本过高问题

pip uninstall numpy
pip install numpy==1.23.5 

②libiomp5md.dll报错
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

进入conda文件夹内将yolov12文件夹内的libiomp5md.dll删除

四、与YOLOv8对比

相同数据集YOLOv8训练结果
请添加图片描述
YOLOv12训练结果
请添加图片描述
YOLOv8在训练到200多轮时,便因为性能提升过低暂停了。YOLOv12的训练轮数则是拉满了600轮,虽然YOLOv12前期 loss很高但是会快速下降,整个曲线也很平稳,precision和recall也更加的平稳向上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值