Llama 3.2 视觉能力评估

Meta 发布了 Llama 3 模型的新版本;这次,有四种模型用于不同的目的:两个多模态模型,Llama 3.2 11B 和 90B,以及两个用于边缘设备的小型语言模型,1B 和 3B。

这些是 Meta AI 的首批多模态模型,基准测试表明它们是小型和中型专有替代品的强大竞争对手。我不太喜欢 LLM 基准测试;它们往往具有误导性,可能无法代表现实世界的表现。但是,你可以在官方博客文章中查看结果。

我想在我每天经常遇到的最常见的视觉任务上测试该模型,并将其性能与我的首选 GPT-4o 进行比较。

我关注的任务包括:

  • 基本图像理解
  • 医疗处方和报告分析
  • 从图像中提取文本
  • 财务图表解释

 NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - 

### 关于 LLaMA 3.2 Vision 知识库资料文档下载与使用教程 #### 获取官方资源和支持材料 为了获取有关 LLaMA 3.2 Vision 的最新和最权威的知识库资料,建议访问 Meta 官方网站或 GitHub 页面。这些平台通常会提供详细的安装指南、API 参考手册以及常见问题解答等支持文件[^1]。 #### 文档结构概述 LLaMA 3.2 Vision 的官方文档一般分为几个主要部分: - **快速入门**:介绍如何设置环境并运行第一个示例程序。 - **高级特性**:深入探讨框架内部机制及其优化技巧。 - **案例研究**:展示实际应用场景中的最佳实践方案。 - **社区贡献**:鼓励开发者分享自己的经验和改进意见。 #### 下载途径 对于希望离线查阅文档的用户来说,可以从项目主页上的 "Releases" 或者 "Documentation" 版块找到可供下载的 PDF 文件或其他格式的手册。此外,在某些情况下也可能存在 Docker 映像内嵌入完整的开发工具链供使用者直接调用。 #### 使用教程要点 当涉及到具体操作层面时,则需特别关注以下几个方面: - **依赖项管理**:确保所有必要的 Python 库都已正确安装。 - **数据预处理**:了解输入图片应该如何被调整大小、裁剪或者其他形式转换以便适配模型需求。 - **性能评估指标解读**:掌握用于衡量视觉识别效果的关键参数意义及计算方法。 ```python import torch from PIL import Image from transformers import AutoImageProcessor, AutoModelForImageClassification processor = AutoImageProcessor.from_pretrained("facebook/llava-lan-guanaco-7b") model = AutoModelForImageClassification.from_pretrained("facebook/llava-lan-guanaco-7b") image_path = "./example.jpg" img = Image.open(image_path).convert('RGB') inputs = processor(images=img, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print(f"Predicted class ID: {predicted_class_idx}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值