项目地址
项目:https://github.com/212534/Unity-Sentis-YOLOv8
Demo apk:链接:https://pan.baidu.com/s/1agTZRhnCzgT5P5HtuUvgWQ?pwd=ydj7
提取码:ydj7
–来自百度网盘超级会员V5的分享
效果展示
这是在电脑上的测试,用的摄像头拍屏幕
安装Sentis
可以把Sentis看作Barracuda的升级版。
在Package里装com.unity.sentis
使用Sentis推理yolov8的onnx
这一部分比较简单,教程非常多
using System.Collections;
using System.Collections.Generic;
using Unity.Sentis;
using UnityEngine;
using Unity.Sentis.Layers;
public class Test: MonoBehaviour
{
public ModelAsset modelAsset;
private Model model;
private IWorker worker;
Ops ops;
void Start()
{
model = ModelLoader.Load(modelAsset);
worker = WorkerFactory.CreateWorker(BackendType.GPUCompute, model);
ops = WorkerFactory.CreateOps(BackendType.GPUCompute, null);
}
public void Predict(WebCamTexture camImage) //我这里使用的是摄像头图像,你也可以用普通图片。
{
using Tensor inputImage = TextureConverter.ToTensor(camImage,width:640,height:640, channels: 3); //对输入的图像做处理
var m_Inputs = new Dictionary<string, Tensor>
{
{
"images", inputImage }
};
worker.Execute(m_Inputs);//执行推理
var output0 = worker.PeekOutput("output0") as TensorFloat; //获取输出结果
output0.MakeReadable(); //从GPU中取出数据,经过这一步之后就可以读取output0中的数据了
}
}
直接把onnx文件拖上去就行了。
YOLOv8的输出格式
需要注意的是,yolov8的onnx的输出结果是一个1x84x8400的张量(当类别数不同时会有变化),具体含义可以参考这篇文章https://blog.csdn.net/yangkai6121/article/details/133843368
简单来讲,这里的8400是8400个预测框。而每个预测框包含以下信息:84 = 边界框预测4 + 数据集类别80
本文使用的yolov8是在coco数据集上训练的,包含80个类别,所以这里是4+80,具体情况与你的训练用的数据集类别有关。
1x84x8400这个输出很明显没法直接使用。所以需要加一个nms来后处理
NMS
yolo属于单阶段的目标检测算法,因此还要对预测框进行后处理。常见的做法是在Unity里用C#自己实现nms,但nms本身就是一个性能开销很大的后处理,自己用C#实现在性能上不划算。
如果是了解目标检测部署的同学,应该知道onnx在opset11及以上版本支持了内置nms层。那么理论上,只要在yolov8的检测头里把torch.ops.torchvision.nms加进去就可以导出自带nms层的ONNX模型。像下图一样
实际上经过测试,Sentis确实可以识别出onnx的内置nms层,但是会报错。
原因可能在于,Sentis内实现的nms层与torch.ops.torchvision.nms在input的shape上存在区别。
举例来讲,在python中对yolov8使用torch.ops.torchvision.nms时,它要求的boxes输入shape为8400x4,scores为8400.
但是Sentis实现的nms层要求的shape分别为,1x8400x4与1x1x8400。
使用Sentis给模型加入NMS层
既然torch.ops.torchvision.nms不能用,那我们可以在Unity里用代码把Sentis实现的nms层加到模型里。
先看一下Sentis中NonMaxSuppression()的输入参数。详细的可以看这里
https://docs.unity3d.com/Packages/com.unity.sentis@1.2/api/Unity.Sentis.Layers.NonMaxSuppression.html
大体来讲与torch.ops.torchvision.nms的输入参数比较一致。
我们需要解决的问题便是把yolov8输出的1x84x8400张量拆解为boxes与scores,也就是NonMaxSuppression()输入。而Sentis是支持在Unity中对模型结构进行修改的。
1.首先我们给模型加入三个新的输入,这也是NonMaxSuppression()所需要的输入。使用新增输入的形式设置这三个值,可以在程序运行时对它们动态修改。
//Set input
model.AddInput("maxOutputBoxesPerClass",DataType.Int, new SymbolicTensorShape(1)); //每个类别最多返回的边框数量。
model.AddInput("iouThreshold",DataType.Float, new SymbolicTensorShape(1)); //iou阈值
model.AddInput("scoreThreshold",DataType.Float, new SymbolicTensorShape(1)); //置信度阈值
2.对1x8400x4进行拆分。比较反人类的是,Sentis在添加层时,有些层的初始化只能输入字符串作为参数,这些字符串实际上是网络里的输出名,输入名,常量名等。所以这里要给模型加入几个常量。
我在注释里加入了每一层的shape变化,方便各位理解这个过程。如果你没搞过深度学习,不理解每一层的含义,可以去官方文档里看具体解释。
https://docs.unity3d.com/Packages/com.unity.sentis@1.2/api/Unity.Sentis.Layers.html
//Set constants
model.AddConstant(new Constant("0", new int[] {
0 })